diff --git a/README.md b/README.md
index f349d1a..dbd7143 100644
--- a/README.md
+++ b/README.md
@@ -18,9 +18,10 @@
```
btc_price_anany/
├── main.py # CLI 入口
+├── download_data.py # 数据下载脚本
├── requirements.txt # Python 依赖
├── LICENSE # MIT 许可证
-├── data/ # 15 个 BTC/USDT K线 CSV(1m ~ 1M)
+├── data/ # 15 个 BTC/USDT K线 CSV(需下载)
├── src/ # 30 个分析与工具模块
│ ├── data_loader.py # 数据加载与校验
│ ├── preprocessing.py # 衍生特征工程
@@ -44,8 +45,8 @@ btc_price_anany/
### 安装
```bash
-git clone https://github.com/riba2534/btc_price_anany.git
-cd btc_price_anany
+git clone https://github.com/riba2534/bitcoin-all-klines-analysis.git
+cd bitcoin-all-klines-analysis
pip install -r requirements.txt
```
@@ -85,13 +86,23 @@ python main.py --start 2020-01-01 --end 2025-12-31
| `btcusdt_1w.csv` | 1 周 | ~450 |
| `btcusdt_1mo.csv` | 1 月 | ~100 |
-全部数据来源于 Binance 公开 API,时间范围 2017-08 至 2026-02。
+全部数据来源于 Binance 公开 API,时间范围 2017-08-17(BTCUSDT 上线日)至今。
-> **数据未包含在仓库中**,请从 Binance 官方数据源下载后放入 `data/` 目录:
+> **数据未包含在仓库中**,请使用内置脚本一键下载:
>
-> - K 线数据下载页面:
-> - 将 URL 中的 `1m` 替换为所需粒度(`3m`、`5m`、`15m`、`30m`、`1h`、`2h`、`4h`、`6h`、`8h`、`12h`、`1d`、`3d`、`1w`、`1mo`)即可下载对应时间粒度的数据
-> - 下载后合并为单个 CSV 文件,命名格式:`btcusdt_{interval}.csv`,放入 `data/` 目录
+> ```bash
+> # 下载全部 15 个粒度(约需 30-60 分钟,支持断点续传)
+> python download_data.py
+>
+> # 只下载指定粒度
+> python download_data.py 1d 1h 4h
+>
+> # 查看可用粒度
+> python download_data.py --list
+> ```
+>
+> 也可从 Binance 官方手动下载:
+> (将 URL 中的 `1m` 替换为所需粒度即可)
## 分析模块
diff --git a/download_data.py b/download_data.py
new file mode 100644
index 0000000..5cc135a
--- /dev/null
+++ b/download_data.py
@@ -0,0 +1,263 @@
+#!/usr/bin/env python3
+"""
+BTC/USDT K线数据下载脚本
+
+从 Binance 公开 API 下载全部 15 个时间粒度的历史 K 线数据。
+数据范围:2017-08-17(BTCUSDT 上线日)至今。
+支持断点续传:已下载的数据不会重复拉取。
+
+用法:
+ python download_data.py # 下载全部 15 个粒度
+ python download_data.py 1d 1h 4h # 只下载指定粒度
+ python download_data.py --list # 查看可用粒度
+"""
+
+import csv
+import sys
+import time
+import requests
+from datetime import datetime, timezone
+from pathlib import Path
+
+# ============================================================
+# 配置
+# ============================================================
+
+SYMBOL = "BTCUSDT"
+BASE_URL = "https://api.binance.com/api/v3/klines"
+LIMIT = 1000 # 每次请求最大行数
+
+# BTCUSDT 上线时间
+START_MS = int(datetime(2017, 8, 17, tzinfo=timezone.utc).timestamp() * 1000)
+
+# 全部 15 个粒度(API 参数值)
+ALL_INTERVALS = [
+ "1m", "3m", "5m", "15m", "30m",
+ "1h", "2h", "4h", "6h", "8h", "12h",
+ "1d", "3d", "1w", "1M",
+]
+
+# API interval → 本地文件名中的粒度标识
+INTERVAL_TO_FILENAME = {i: i for i in ALL_INTERVALS}
+INTERVAL_TO_FILENAME["1M"] = "1mo" # Binance API 用 '1M',项目文件用 '1mo'
+
+# CSV 表头,与 src/data_loader.py 期望的列名一致
+CSV_HEADER = [
+ "open_time", "open", "high", "low", "close", "volume",
+ "close_time", "quote_volume", "trades",
+ "taker_buy_volume", "taker_buy_quote_volume", "ignore",
+]
+
+
+# ============================================================
+# 下载逻辑
+# ============================================================
+
+def get_last_timestamp(filepath: Path) -> int | None:
+ """读取已有 CSV 最后一行的 close_time,用于断点续传。"""
+ if not filepath.exists() or filepath.stat().st_size == 0:
+ return None
+ last_line = ""
+ with open(filepath, "rb") as f:
+ # 从文件末尾向前查找最后一行
+ f.seek(0, 2)
+ pos = f.tell()
+ while pos > 0:
+ pos -= 1
+ f.seek(pos)
+ ch = f.read(1)
+ if ch == b"\n" and pos < f.tell() - 1:
+ last_line = f.readline().decode().strip()
+ break
+ if not last_line:
+ f.seek(0)
+ for line in f:
+ last_line = line.decode().strip()
+ if not last_line or last_line.startswith("open_time"):
+ return None
+ try:
+ close_time = int(last_line.split(",")[6])
+ return close_time
+ except (IndexError, ValueError):
+ return None
+
+
+def count_lines(filepath: Path) -> int:
+ """快速统计 CSV 数据行数(不含表头)。"""
+ if not filepath.exists():
+ return 0
+ with open(filepath, "rb") as f:
+ count = sum(1 for _ in f) - 1 # 减去表头
+ return max(0, count)
+
+
+def download_interval(interval: str, output_dir: Path) -> int:
+ """下载单个粒度的全量 K 线数据,返回最终行数。"""
+ tag = INTERVAL_TO_FILENAME[interval]
+ filepath = output_dir / f"btcusdt_{tag}.csv"
+
+ existing_rows = count_lines(filepath)
+ last_ts = get_last_timestamp(filepath)
+
+ if last_ts is not None:
+ start_time = last_ts + 1
+ print(f" 断点续传: 已有 {existing_rows:,} 行,"
+ f"从 {ms_to_date(start_time)} 继续")
+ else:
+ start_time = START_MS
+
+ now_ms = int(datetime.now(timezone.utc).timestamp() * 1000)
+ if start_time >= now_ms:
+ print(f" 已是最新数据,跳过")
+ return existing_rows
+
+ # 写入模式:续传用 append,否则新建
+ mode = "a" if existing_rows > 0 else "w"
+ new_rows = 0
+ retries = 0
+ max_retries = 10
+
+ with open(filepath, mode, newline="") as f:
+ writer = csv.writer(f)
+ if existing_rows == 0:
+ writer.writerow(CSV_HEADER)
+
+ current = start_time
+ while current < now_ms:
+ params = {
+ "symbol": SYMBOL,
+ "interval": interval,
+ "startTime": current,
+ "limit": LIMIT,
+ }
+ try:
+ resp = requests.get(BASE_URL, params=params, timeout=30)
+
+ if resp.status_code == 429:
+ wait = int(resp.headers.get("Retry-After", 60))
+ print(f"\n [限频] 等待 {wait}s...")
+ time.sleep(wait)
+ continue
+ if resp.status_code == 418:
+ print(f"\n [IP 封禁] 等待 120s...")
+ time.sleep(120)
+ continue
+
+ resp.raise_for_status()
+ data = resp.json()
+
+ if not data:
+ break
+
+ for row in data:
+ writer.writerow(row)
+ new_rows += len(data)
+
+ # 下一批起始点
+ current = data[-1][6] + 1 # last close_time + 1
+
+ # 进度
+ total = existing_rows + new_rows
+ pct = min(100, (current - START_MS) / max(1, now_ms - START_MS) * 100)
+ print(f"\r {ms_to_date(current)} | "
+ f"{total:>10,} 行 | {pct:5.1f}%", end="", flush=True)
+
+ retries = 0
+ time.sleep(0.05)
+
+ except KeyboardInterrupt:
+ print(f"\n [中断] 已保存 {existing_rows + new_rows:,} 行")
+ return existing_rows + new_rows
+ except requests.exceptions.RequestException as e:
+ retries += 1
+ if retries > max_retries:
+ print(f"\n [失败] 连续 {max_retries} 次错误,中止: {e}")
+ break
+ wait = min(2 ** retries, 60)
+ print(f"\n [重试 {retries}/{max_retries}] {wait}s 后: {e}")
+ time.sleep(wait)
+
+ total = existing_rows + new_rows
+ print(f"\n 完成: +{new_rows:,} 行,共 {total:,} 行 → {filepath.name}")
+ return total
+
+
+def ms_to_date(ms: int) -> str:
+ return datetime.fromtimestamp(ms / 1000, tz=timezone.utc).strftime("%Y-%m-%d")
+
+
+# ============================================================
+# 入口
+# ============================================================
+
+def parse_interval(arg: str) -> str:
+ """将用户输入的粒度标识映射为 Binance API interval。"""
+ s = arg.strip().lower()
+ # 处理 '1mo' → '1M'
+ if s == "1mo":
+ return "1M"
+ for iv in ALL_INTERVALS:
+ if iv.lower() == s:
+ return iv
+ return ""
+
+
+def main():
+ output_dir = Path(__file__).resolve().parent / "data"
+ output_dir.mkdir(exist_ok=True)
+
+ # --list 模式
+ if "--list" in sys.argv:
+ print("可用粒度:")
+ for iv in ALL_INTERVALS:
+ tag = INTERVAL_TO_FILENAME[iv]
+ print(f" {tag:5s} (API: {iv})")
+ return
+
+ # 解析参数
+ if len(sys.argv) > 1:
+ intervals = []
+ for arg in sys.argv[1:]:
+ iv = parse_interval(arg)
+ if not iv:
+ print(f"未知粒度: {arg}")
+ tags = [INTERVAL_TO_FILENAME[i] for i in ALL_INTERVALS]
+ print(f"可选: {', '.join(tags)}")
+ sys.exit(1)
+ intervals.append(iv)
+ else:
+ intervals = list(ALL_INTERVALS)
+
+ tags = [INTERVAL_TO_FILENAME[i] for i in intervals]
+ print("=" * 60)
+ print(f"BTC/USDT K 线数据下载")
+ print(f"=" * 60)
+ print(f"交易对: {SYMBOL}")
+ print(f"粒度: {', '.join(tags)}")
+ print(f"起始日: {ms_to_date(START_MS)}")
+ print(f"输出目录: {output_dir}")
+ print(f"依赖: pip install requests")
+ print("=" * 60)
+
+ results = {}
+ t0 = time.time()
+
+ for i, interval in enumerate(intervals, 1):
+ tag = INTERVAL_TO_FILENAME[interval]
+ print(f"\n[{i}/{len(intervals)}] {tag}")
+ rows = download_interval(interval, output_dir)
+ results[tag] = rows
+
+ elapsed = time.time() - t0
+ m, s = divmod(int(elapsed), 60)
+
+ print(f"\n{'=' * 60}")
+ print(f"全部完成(耗时 {m}m{s}s):")
+ print(f"{'=' * 60}")
+ for tag, rows in results.items():
+ print(f" {tag:5s} → {rows:>10,} 行")
+ print(f"\n数据目录: {output_dir}")
+
+
+if __name__ == "__main__":
+ main()
diff --git a/requirements.txt b/requirements.txt
index d481281..41553d1 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,3 +1,4 @@
+requests>=2.28
pandas>=2.0
numpy>=1.24
scipy>=1.11