diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..9ec2924 --- /dev/null +++ b/.gitignore @@ -0,0 +1,31 @@ +# Python +__pycache__/ +*.py[cod] +*$py.class +*.egg-info/ +*.egg +dist/ +build/ + +# Virtual environments +.venv/ +venv/ +env/ + +# IDE +.vscode/ +.idea/ +*.swp +*.swo + +# OS +.DS_Store +Thumbs.db + +# Testing +.pytest_cache/ +.coverage +htmlcov/ + +# Jupyter +.ipynb_checkpoints/ diff --git a/output/acf/acf_grid.png b/output/acf/acf_grid.png index f5c4b9f..e756917 100644 Binary files a/output/acf/acf_grid.png and b/output/acf/acf_grid.png differ diff --git a/output/acf/pacf_grid.png b/output/acf/pacf_grid.png index ce77ae5..85e2928 100644 Binary files a/output/acf/pacf_grid.png and b/output/acf/pacf_grid.png differ diff --git a/output/acf/significant_lags_heatmap.png b/output/acf/significant_lags_heatmap.png index 23d2ecf..82462bb 100644 Binary files a/output/acf/significant_lags_heatmap.png and b/output/acf/significant_lags_heatmap.png differ diff --git a/output/all_results.json b/output/all_results.json index cf32c07..2de7768 100644 --- a/output/all_results.json +++ b/output/all_results.json @@ -1,4 +1,840 @@ { + "fft": { + "daily_peaks": " period_days frequency power noise_level snr\n0 39.615385 0.025243 0.007486 0.001178 6.355355\n1 3.111782 0.321359 0.007130 0.001352 5.273187\n2 14.372093 0.069579 0.006190 0.001187 5.216536\n3 13.261803 0.075405 0.006166 0.001188 5.188618", + "multi_tf_peaks": "{'4h': period_days frequency power noise_level snr\n0 2.182214 0.458250 0.001304 0.000203 6.414376\n1 39.587607 0.025260 0.001277 0.000201 6.340524\n2 2.210332 0.452421 0.001260 0.000203 6.199798\n3 3.075531 0.325147 0.001228 0.000202 6.069181\n4 13.309626 0.075134 0.001128 0.000201 5.598435\n5 3.382074 0.295677 0.001118 0.000202 5.527193\n6 2.482181 0.402871 0.001101 0.000203 5.428543\n7 4.893555 0.204350 0.001070 0.000202 5.303870\n8 4.184056 0.239003 0.001055 0.000202 5.222734\n9 2.789371 0.358504 0.001057 0.000203 5.219469\n10 2.177598 0.459222 0.001057 0.000203 5.197185\n11 14.362016 0.069628 0.001025 0.000201 5.089240, '1d': period_days frequency power noise_level snr\n0 39.615385 0.025243 0.007486 0.001178 6.355355\n1 3.111782 0.321359 0.007130 0.001352 5.273187\n2 14.372093 0.069579 0.006190 0.001187 5.216536\n3 13.261803 0.075405 0.006166 0.001188 5.188618, '1w': period_days frequency power noise_level snr\n0 39.454545 0.025346 0.057044 0.009711 5.873872}", + "bandpass_variance_ratios": { + "7d": 14.917052544334325, + "30d": 3.770230414627656, + "90d": 2.4054786415083576, + "365d": 0.748511130559413, + "1400d": 0.23278898254402042 + }, + "bandpass_components": "{'7d': array([-2.97061917e-03, 8.09307366e-04, 1.64398528e-03, ...,\n -1.99758500e-02, -1.92389106e-02, -8.40156425e-05]), '30d': array([0.00811365, 0.01061458, 0.0131885 , ..., 0.00061353, 0.00056402,\n 0.00048904]), '90d': array([-3.81400112e-02, -3.57430742e-02, -3.31503607e-02, ...,\n -3.86752623e-05, -3.43679665e-05, -3.02800847e-05]), '365d': array([-0.00037487, -0.00025267, -0.00013042, ..., -0.00074066,\n -0.00061892, -0.00049698]), '1400d': array([-5.08113855e-05, -4.99293812e-05, -4.90661763e-05, ...,\n -5.35684912e-05, -5.26311118e-05, -5.17120193e-05])}", + "ar1_rho": -0.04993111698604458, + "daily_spectrum": "{'freqs': array([3.23624595e-04, 6.47249191e-04, 9.70873786e-04, ...,\n 4.99029126e-01, 4.99352751e-01, 4.99676375e-01]), 'periods': array([3.09000000e+03, 1.54500000e+03, 1.03000000e+03, ...,\n 2.00389105e+00, 2.00259235e+00, 2.00129534e+00]), 'power': array([0.00062218, 0.00373931, 0.00464221, ..., 0.00234932, 0.00027632,\n 0.00022944]), 'noise_mean': array([0.0011765 , 0.0011765 , 0.0011765 , ..., 0.00143682, 0.00143682,\n 0.00143682]), 'noise_threshold': array([0.00352447, 0.00352448, 0.00352448, ..., 0.00430432, 0.00430433,\n 0.00430433])}", + "multi_tf_results": "{'4h': {'freqs': array([3.23851676e-04, 6.47703352e-04, 9.71555028e-04, ...,\n 2.99919037e+00, 2.99951422e+00, 2.99983807e+00]), 'periods': array([3.08783333e+03, 1.54391667e+03, 1.02927778e+03, ...,\n 3.33423316e-01, 3.33387317e-01, 3.33351326e-01]), 'power': array([0.00010316, 0.00062397, 0.0007734 , ..., 0.00028183, 0.00066969,\n 0.00094334]), 'noise_mean': array([0.0002014 , 0.0002014 , 0.0002014 , ..., 0.00024194, 0.00024194,\n 0.00024194]), 'noise_threshold': array([0.00060335, 0.00060335, 0.00060335, ..., 0.00072478, 0.00072478,\n 0.00072478]), 'peaks': period_days frequency power noise_level snr\n0 2.182214 0.458250 0.001304 0.000203 6.414376\n1 39.587607 0.025260 0.001277 0.000201 6.340524\n2 2.210332 0.452421 0.001260 0.000203 6.199798\n3 3.075531 0.325147 0.001228 0.000202 6.069181\n4 13.309626 0.075134 0.001128 0.000201 5.598435\n5 3.382074 0.295677 0.001118 0.000202 5.527193\n6 2.482181 0.402871 0.001101 0.000203 5.428543\n7 4.893555 0.204350 0.001070 0.000202 5.303870\n8 4.184056 0.239003 0.001055 0.000202 5.222734\n9 2.789371 0.358504 0.001057 0.000203 5.219469\n10 2.177598 0.459222 0.001057 0.000203 5.197185\n11 14.362016 0.069628 0.001025 0.000201 5.089240, 'log_ret': array([ 0.01761637, -0.01707629, -0.00624831, ..., -0.01471412,\n -0.00540965, -0.00268024]), 'label': '4h'}, '1d': {'freqs': array([3.23624595e-04, 6.47249191e-04, 9.70873786e-04, ...,\n 4.99029126e-01, 4.99352751e-01, 4.99676375e-01]), 'periods': array([3.09000000e+03, 1.54500000e+03, 1.03000000e+03, ...,\n 2.00389105e+00, 2.00259235e+00, 2.00129534e+00]), 'power': array([0.00062218, 0.00373931, 0.00464221, ..., 0.00234932, 0.00027632,\n 0.00022944]), 'noise_mean': array([0.0011765 , 0.0011765 , 0.0011765 , ..., 0.00143682, 0.00143682,\n 0.00143682]), 'noise_threshold': array([0.00352447, 0.00352448, 0.00352448, ..., 0.00430432, 0.00430433,\n 0.00430433]), 'peaks': period_days frequency power noise_level snr\n0 39.615385 0.025243 0.007486 0.001178 6.355355\n1 3.111782 0.321359 0.007130 0.001352 5.273187\n2 14.372093 0.069579 0.006190 0.001187 5.216536\n3 13.261803 0.075405 0.006166 0.001188 5.188618, 'log_ret': array([-0.04211287, 0.0076646 , -0.01305349, ..., -0.00461393,\n -0.06774794, -0.02277265]), 'label': '1d'}, '1w': {'freqs': array([0.00032916, 0.00065833, 0.00098749, 0.00131666, 0.00164582,\n 0.00197498, 0.00230415, 0.00263331, 0.00296248, 0.00329164,\n 0.0036208 , 0.00394997, 0.00427913, 0.00460829, 0.00493746,\n 0.00526662, 0.00559579, 0.00592495, 0.00625411, 0.00658328,\n 0.00691244, 0.00724161, 0.00757077, 0.00789993, 0.0082291 ,\n 0.00855826, 0.00888743, 0.00921659, 0.00954575, 0.00987492,\n 0.01020408, 0.01053325, 0.01086241, 0.01119157, 0.01152074,\n 0.0118499 , 0.01217907, 0.01250823, 0.01283739, 0.01316656,\n 0.01349572, 0.01382488, 0.01415405, 0.01448321, 0.01481238,\n 0.01514154, 0.0154707 , 0.01579987, 0.01612903, 0.0164582 ,\n 0.01678736, 0.01711652, 0.01744569, 0.01777485, 0.01810402,\n 0.01843318, 0.01876234, 0.01909151, 0.01942067, 0.01974984,\n 0.020079 , 0.02040816, 0.02073733, 0.02106649, 0.02139566,\n 0.02172482, 0.02205398, 0.02238315, 0.02271231, 0.02304147,\n 0.02337064, 0.0236998 , 0.02402897, 0.02435813, 0.02468729,\n 0.02501646, 0.02534562, 0.02567479, 0.02600395, 0.02633311,\n 0.02666228, 0.02699144, 0.02732061, 0.02764977, 0.02797893,\n 0.0283081 , 0.02863726, 0.02896643, 0.02929559, 0.02962475,\n 0.02995392, 0.03028308, 0.03061224, 0.03094141, 0.03127057,\n 0.03159974, 0.0319289 , 0.03225806, 0.03258723, 0.03291639,\n 0.03324556, 0.03357472, 0.03390388, 0.03423305, 0.03456221,\n 0.03489138, 0.03522054, 0.0355497 , 0.03587887, 0.03620803,\n 0.0365372 , 0.03686636, 0.03719552, 0.03752469, 0.03785385,\n 0.03818302, 0.03851218, 0.03884134, 0.03917051, 0.03949967,\n 0.03982883, 0.040158 , 0.04048716, 0.04081633, 0.04114549,\n 0.04147465, 0.04180382, 0.04213298, 0.04246215, 0.04279131,\n 0.04312047, 0.04344964, 0.0437788 , 0.04410797, 0.04443713,\n 0.04476629, 0.04509546, 0.04542462, 0.04575379, 0.04608295,\n 0.04641211, 0.04674128, 0.04707044, 0.04739961, 0.04772877,\n 0.04805793, 0.0483871 , 0.04871626, 0.04904542, 0.04937459,\n 0.04970375, 0.05003292, 0.05036208, 0.05069124, 0.05102041,\n 0.05134957, 0.05167874, 0.0520079 , 0.05233706, 0.05266623,\n 0.05299539, 0.05332456, 0.05365372, 0.05398288, 0.05431205,\n 0.05464121, 0.05497038, 0.05529954, 0.0556287 , 0.05595787,\n 0.05628703, 0.05661619, 0.05694536, 0.05727452, 0.05760369,\n 0.05793285, 0.05826201, 0.05859118, 0.05892034, 0.05924951,\n 0.05957867, 0.05990783, 0.060237 , 0.06056616, 0.06089533,\n 0.06122449, 0.06155365, 0.06188282, 0.06221198, 0.06254115,\n 0.06287031, 0.06319947, 0.06352864, 0.0638578 , 0.06418697,\n 0.06451613, 0.06484529, 0.06517446, 0.06550362, 0.06583278,\n 0.06616195, 0.06649111, 0.06682028, 0.06714944, 0.0674786 ,\n 0.06780777, 0.06813693, 0.0684661 , 0.06879526, 0.06912442,\n 0.06945359, 0.06978275, 0.07011192, 0.07044108, 0.07077024,\n 0.07109941]), 'periods': array([3038. , 1519. , 1012.66666667, 759.5 ,\n 607.6 , 506.33333333, 434. , 379.75 ,\n 337.55555556, 303.8 , 276.18181818, 253.16666667,\n 233.69230769, 217. , 202.53333333, 189.875 ,\n 178.70588235, 168.77777778, 159.89473684, 151.9 ,\n 144.66666667, 138.09090909, 132.08695652, 126.58333333,\n 121.52 , 116.84615385, 112.51851852, 108.5 ,\n 104.75862069, 101.26666667, 98. , 94.9375 ,\n 92.06060606, 89.35294118, 86.8 , 84.38888889,\n 82.10810811, 79.94736842, 77.8974359 , 75.95 ,\n 74.09756098, 72.33333333, 70.65116279, 69.04545455,\n 67.51111111, 66.04347826, 64.63829787, 63.29166667,\n 62. , 60.76 , 59.56862745, 58.42307692,\n 57.32075472, 56.25925926, 55.23636364, 54.25 ,\n 53.29824561, 52.37931034, 51.49152542, 50.63333333,\n 49.80327869, 49. , 48.22222222, 47.46875 ,\n 46.73846154, 46.03030303, 45.34328358, 44.67647059,\n 44.02898551, 43.4 , 42.78873239, 42.19444444,\n 41.61643836, 41.05405405, 40.50666667, 39.97368421,\n 39.45454545, 38.94871795, 38.4556962 , 37.975 ,\n 37.50617284, 37.04878049, 36.60240964, 36.16666667,\n 35.74117647, 35.3255814 , 34.91954023, 34.52272727,\n 34.13483146, 33.75555556, 33.38461538, 33.02173913,\n 32.66666667, 32.31914894, 31.97894737, 31.64583333,\n 31.31958763, 31. , 30.68686869, 30.38 ,\n 30.07920792, 29.78431373, 29.49514563, 29.21153846,\n 28.93333333, 28.66037736, 28.39252336, 28.12962963,\n 27.87155963, 27.61818182, 27.36936937, 27.125 ,\n 26.88495575, 26.64912281, 26.4173913 , 26.18965517,\n 25.96581197, 25.74576271, 25.52941176, 25.31666667,\n 25.10743802, 24.90163934, 24.69918699, 24.5 ,\n 24.304 , 24.11111111, 23.92125984, 23.734375 ,\n 23.5503876 , 23.36923077, 23.19083969, 23.01515152,\n 22.84210526, 22.67164179, 22.5037037 , 22.33823529,\n 22.17518248, 22.01449275, 21.85611511, 21.7 ,\n 21.54609929, 21.3943662 , 21.24475524, 21.09722222,\n 20.95172414, 20.80821918, 20.66666667, 20.52702703,\n 20.38926174, 20.25333333, 20.1192053 , 19.98684211,\n 19.85620915, 19.72727273, 19.6 , 19.47435897,\n 19.35031847, 19.2278481 , 19.10691824, 18.9875 ,\n 18.86956522, 18.75308642, 18.63803681, 18.52439024,\n 18.41212121, 18.30120482, 18.19161677, 18.08333333,\n 17.97633136, 17.87058824, 17.76608187, 17.6627907 ,\n 17.56069364, 17.45977011, 17.36 , 17.26136364,\n 17.16384181, 17.06741573, 16.97206704, 16.87777778,\n 16.78453039, 16.69230769, 16.6010929 , 16.51086957,\n 16.42162162, 16.33333333, 16.2459893 , 16.15957447,\n 16.07407407, 15.98947368, 15.90575916, 15.82291667,\n 15.74093264, 15.65979381, 15.57948718, 15.5 ,\n 15.4213198 , 15.34343434, 15.26633166, 15.19 ,\n 15.11442786, 15.03960396, 14.96551724, 14.89215686,\n 14.8195122 , 14.74757282, 14.6763285 , 14.60576923,\n 14.53588517, 14.46666667, 14.39810427, 14.33018868,\n 14.2629108 , 14.19626168, 14.13023256, 14.06481481]), 'power': array([5.04731820e-03, 2.54202438e-02, 3.29256798e-02, 2.32601150e-02,\n 7.19168741e-03, 4.07702144e-03, 1.31016337e-02, 1.33647991e-02,\n 2.25619065e-02, 9.06932138e-03, 2.12605364e-02, 1.30420666e-02,\n 1.75090968e-02, 2.59934318e-02, 1.56038741e-02, 1.13190286e-02,\n 3.38425939e-03, 3.90450547e-03, 1.01345109e-02, 6.52712796e-03,\n 1.93218089e-03, 8.54169510e-03, 1.81711957e-02, 4.76819376e-03,\n 1.36862009e-03, 1.26675786e-02, 2.36832798e-02, 3.31122805e-03,\n 6.88655529e-03, 6.19429647e-03, 7.54168482e-04, 7.42115115e-03,\n 1.51507514e-02, 1.33937217e-02, 8.45247520e-03, 5.34075010e-03,\n 5.70067629e-03, 2.37223308e-02, 5.37421870e-03, 4.41235670e-04,\n 2.03187341e-04, 2.50551066e-03, 8.50939182e-03, 1.17597909e-02,\n 4.94199844e-03, 2.12761785e-03, 6.56113855e-03, 1.01714343e-02,\n 5.62639737e-03, 1.27106690e-02, 1.47849324e-02, 5.64655462e-03,\n 5.24277718e-03, 1.27782820e-02, 2.95455273e-02, 2.51233871e-02,\n 1.53276602e-03, 6.65242716e-03, 8.22040762e-03, 4.86617282e-03,\n 8.44698516e-03, 9.38048137e-04, 4.41104449e-04, 1.93021895e-04,\n 3.38715064e-03, 1.45972399e-02, 2.25114006e-02, 9.92147536e-03,\n 2.11296217e-03, 4.85833662e-03, 6.40711760e-03, 1.09797288e-02,\n 9.39549071e-03, 4.81773075e-03, 1.30206993e-02, 3.66594547e-02,\n 5.70439711e-02, 2.67748831e-02, 6.14358316e-03, 5.64149450e-03,\n 1.10069855e-03, 4.69164314e-03, 7.95593765e-03, 9.03137294e-03,\n 4.76333873e-03, 4.00992543e-03, 1.22710735e-02, 5.29245950e-03,\n 4.54922183e-04, 9.84103767e-04, 3.40059340e-04, 1.03051997e-03,\n 1.10483270e-02, 1.48678769e-02, 1.94958651e-02, 1.33427874e-02,\n 4.81017827e-03, 5.12395285e-03, 7.63732110e-03, 8.75867708e-03,\n 7.92267913e-03, 1.24800768e-02, 1.16172127e-02, 2.14708148e-02,\n 3.62692710e-02, 6.14068109e-03, 9.66533909e-03, 1.28510341e-02,\n 1.88876566e-02, 2.99603175e-02, 1.67991343e-02, 7.87212982e-03,\n 8.06670187e-03, 5.75849696e-03, 3.69292303e-03, 2.58726515e-03,\n 8.42621068e-04, 3.91378652e-03, 1.63645128e-02, 2.32006253e-02,\n 1.14690692e-03, 1.05130926e-03, 2.42622719e-03, 1.11230317e-03,\n 3.44273041e-03, 1.10922301e-02, 3.11889325e-03, 1.18718829e-02,\n 4.89384194e-03, 4.69456656e-03, 5.85533653e-03, 3.76823190e-03,\n 1.85373799e-03, 3.47645535e-03, 7.08100917e-04, 6.83875814e-03,\n 2.65207722e-03, 6.21014222e-03, 1.71526609e-02, 8.59171734e-03,\n 5.10323590e-03, 5.17942219e-03, 6.27372616e-03, 8.53180991e-03,\n 6.24270221e-03, 5.81497566e-04, 9.92337152e-03, 1.10193192e-02,\n 4.20970018e-03, 7.13428111e-03, 3.45337543e-03, 1.49498112e-03,\n 6.19954877e-03, 1.27991689e-02, 1.89395421e-02, 2.08645939e-02,\n 1.92147679e-02, 4.73156141e-04, 4.70553348e-03, 1.53947405e-04,\n 2.79408196e-04, 6.46436647e-03, 5.36361384e-03, 4.24775412e-03,\n 1.03779139e-02, 9.92528633e-03, 1.02800484e-03, 6.41102843e-04,\n 1.18737652e-03, 6.83700084e-03, 6.54711043e-04, 4.17566209e-03,\n 6.80877762e-03, 5.62059165e-03, 3.78821711e-03, 5.97856240e-03,\n 5.65389710e-03, 2.21457802e-03, 1.00680969e-02, 5.15797595e-03,\n 1.55669373e-03, 9.91450808e-04, 1.15631886e-02, 6.12263193e-03,\n 6.17465150e-03, 9.54098034e-04, 1.12148938e-02, 1.43629315e-02,\n 5.06139869e-03, 2.02965805e-04, 1.49012102e-03, 1.49465744e-03,\n 1.34334335e-04, 6.45759159e-04, 4.39451280e-03, 5.81617286e-03,\n 1.02399821e-02, 6.96526834e-03, 9.10156740e-04, 1.59545347e-02,\n 6.03389614e-03, 7.15972092e-05, 2.73526221e-04, 1.61236508e-03,\n 5.19602619e-03, 4.58085183e-03, 3.05963602e-03, 1.02597652e-02,\n 1.70438653e-03, 2.35821281e-02, 2.92636788e-02, 2.63374666e-02,\n 6.22409185e-03, 2.35373999e-04, 6.90831245e-04, 1.42413214e-02]), 'noise_mean': array([0.01059496, 0.01059442, 0.01059352, 0.01059225, 0.01059063,\n 0.01058865, 0.01058631, 0.01058361, 0.01058056, 0.01057715,\n 0.01057339, 0.01056927, 0.01056481, 0.01055999, 0.01055483,\n 0.01054933, 0.01054348, 0.01053729, 0.01053077, 0.01052391,\n 0.01051672, 0.0105092 , 0.01050135, 0.01049318, 0.01048469,\n 0.01047589, 0.01046677, 0.01045734, 0.01044761, 0.01043757,\n 0.01042724, 0.01041661, 0.01040569, 0.01039449, 0.010383 ,\n 0.01037124, 0.01035921, 0.0103469 , 0.01033434, 0.01032151,\n 0.01030843, 0.0102951 , 0.01028153, 0.01026771, 0.01025367,\n 0.01023939, 0.01022488, 0.01021016, 0.01019522, 0.01018008,\n 0.01016473, 0.01014918, 0.01013343, 0.0101175 , 0.01010139,\n 0.0100851 , 0.01006863, 0.010052 , 0.01003521, 0.01001826,\n 0.01000116, 0.00998392, 0.00996654, 0.00994902, 0.00993137,\n 0.0099136 , 0.00989571, 0.00987771, 0.0098596 , 0.00984139,\n 0.00982308, 0.00980468, 0.00978619, 0.00976762, 0.00974897,\n 0.00973026, 0.00971148, 0.00969263, 0.00967374, 0.00965479,\n 0.00963579, 0.00961676, 0.00959769, 0.00957859, 0.00955946,\n 0.00954031, 0.00952114, 0.00950196, 0.00948278, 0.00946359,\n 0.0094444 , 0.00942522, 0.00940605, 0.00938689, 0.00936776,\n 0.00934864, 0.00932956, 0.0093105 , 0.00929148, 0.0092725 ,\n 0.00925357, 0.00923468, 0.00921584, 0.00919706, 0.00917834,\n 0.00915967, 0.00914108, 0.00912255, 0.0091041 , 0.00908573,\n 0.00906743, 0.00904922, 0.00903109, 0.00901305, 0.00899511,\n 0.00897726, 0.00895951, 0.00894186, 0.00892432, 0.00890688,\n 0.00888955, 0.00887234, 0.00885524, 0.00883826, 0.0088214 ,\n 0.00880466, 0.00878805, 0.00877157, 0.00875522, 0.008739 ,\n 0.00872291, 0.00870697, 0.00869116, 0.00867549, 0.00865997,\n 0.00864459, 0.00862936, 0.00861428, 0.00859935, 0.00858457,\n 0.00856995, 0.00855548, 0.00854117, 0.00852703, 0.00851304,\n 0.00849922, 0.00848556, 0.00847206, 0.00845874, 0.00844558,\n 0.00843259, 0.00841978, 0.00840713, 0.00839467, 0.00838237,\n 0.00837026, 0.00835832, 0.00834656, 0.00833498, 0.00832358,\n 0.00831236, 0.00830132, 0.00829047, 0.0082798 , 0.00826932,\n 0.00825903, 0.00824892, 0.00823901, 0.00822928, 0.00821974,\n 0.00821039, 0.00820123, 0.00819227, 0.00818349, 0.00817491,\n 0.00816653, 0.00815834, 0.00815034, 0.00814254, 0.00813494,\n 0.00812753, 0.00812033, 0.00811332, 0.0081065 , 0.00809989,\n 0.00809347, 0.00808726, 0.00808125, 0.00807543, 0.00806982,\n 0.00806441, 0.0080592 , 0.00805419, 0.00804938, 0.00804478,\n 0.00804037, 0.00803618, 0.00803218, 0.00802839, 0.0080248 ,\n 0.00802142, 0.00801824, 0.00801526, 0.00801249, 0.00800993,\n 0.00800756, 0.00800541, 0.00800346, 0.00800171, 0.00800017,\n 0.00799883, 0.0079977 , 0.00799678, 0.00799606, 0.00799554,\n 0.00799523]), 'noise_threshold': array([0.03173966, 0.03173804, 0.03173534, 0.03173155, 0.03172669,\n 0.03172076, 0.03171375, 0.03170567, 0.03169652, 0.0316863 ,\n 0.03167503, 0.03166271, 0.03164933, 0.03163491, 0.03161945,\n 0.03160296, 0.03158544, 0.03156691, 0.03154736, 0.03152681,\n 0.03150527, 0.03148274, 0.03145924, 0.03143476, 0.03140933,\n 0.03138295, 0.03135563, 0.03132739, 0.03129823, 0.03126817,\n 0.03123721, 0.03120537, 0.03117267, 0.0311391 , 0.0311047 ,\n 0.03106946, 0.03103341, 0.03099655, 0.03095891, 0.03092048,\n 0.0308813 , 0.03084137, 0.03080071, 0.03075932, 0.03071724,\n 0.03067446, 0.03063102, 0.03058691, 0.03054216, 0.03049679,\n 0.0304508 , 0.03040422, 0.03035706, 0.03030933, 0.03026106,\n 0.03021225, 0.03016293, 0.03011311, 0.03006281, 0.03001204,\n 0.02996081, 0.02990915, 0.02985708, 0.0298046 , 0.02975173,\n 0.02969849, 0.0296449 , 0.02959097, 0.02953672, 0.02948216,\n 0.02942731, 0.02937218, 0.0293168 , 0.02926117, 0.02920532,\n 0.02914925, 0.02909299, 0.02903654, 0.02897992, 0.02892316,\n 0.02886626, 0.02880923, 0.0287521 , 0.02869488, 0.02863758,\n 0.02858021, 0.02852279, 0.02846534, 0.02840786, 0.02835038,\n 0.0282929 , 0.02823544, 0.028178 , 0.02812062, 0.02806329,\n 0.02800603, 0.02794885, 0.02789177, 0.02783479, 0.02777794,\n 0.02772121, 0.02766462, 0.02760819, 0.02755193, 0.02749584,\n 0.02743993, 0.02738423, 0.02732873, 0.02727345, 0.0272184 ,\n 0.02716359, 0.02710903, 0.02705473, 0.02700069, 0.02694694,\n 0.02689346, 0.02684029, 0.02678742, 0.02673486, 0.02668262,\n 0.02663072, 0.02657915, 0.02652793, 0.02647706, 0.02642655,\n 0.02637641, 0.02632665, 0.02627728, 0.02622829, 0.0261797 ,\n 0.02613151, 0.02608374, 0.02603638, 0.02598945, 0.02594295,\n 0.02589688, 0.02585125, 0.02580607, 0.02576134, 0.02571707,\n 0.02567327, 0.02562993, 0.02558707, 0.02554469, 0.02550279,\n 0.02546137, 0.02542045, 0.02538003, 0.02534011, 0.0253007 ,\n 0.02526179, 0.0252234 , 0.02518553, 0.02514817, 0.02511134,\n 0.02507505, 0.02503928, 0.02500405, 0.02496935, 0.0249352 ,\n 0.0249016 , 0.02486854, 0.02483603, 0.02480408, 0.02477268,\n 0.02474184, 0.02471157, 0.02468185, 0.02465271, 0.02462413,\n 0.02459613, 0.02456869, 0.02454183, 0.02451555, 0.02448985,\n 0.02446473, 0.0244402 , 0.02441625, 0.02439288, 0.02437011,\n 0.02434792, 0.02432632, 0.02430532, 0.02428491, 0.0242651 ,\n 0.02424588, 0.02422727, 0.02420925, 0.02419183, 0.02417501,\n 0.0241588 , 0.02414319, 0.02412819, 0.02411379, 0.0241 ,\n 0.02408681, 0.02407423, 0.02406227, 0.02405091, 0.02404016,\n 0.02403002, 0.0240205 , 0.02401158, 0.02400328, 0.02399559,\n 0.02398852, 0.02398206, 0.02397621, 0.02397098, 0.02396636,\n 0.02396236, 0.02395897, 0.0239562 , 0.02395404, 0.02395251,\n 0.02395158]), 'peaks': period_days frequency power noise_level snr\n0 39.454545 0.025346 0.057044 0.009711 5.873872, 'log_ret': array([ 5.33027564e-02, 4.51529173e-02, -8.77261502e-02, -1.10036874e-01,\n -1.08615051e-02, 1.79233020e-01, 5.80127340e-02, 2.07502906e-01,\n 4.11773085e-02, 3.63010155e-02, 1.74325575e-01, -2.34263335e-01,\n 3.24422460e-01, 1.27168508e-01, 2.01471803e-01, 2.88539264e-01,\n 2.35684467e-01, -3.34354652e-01, 1.58995955e-02, 1.63332626e-01,\n -1.81086533e-01, -1.55883040e-01, 2.98997709e-02, -3.72572108e-01,\n -1.48851671e-02, 2.52816436e-01, -7.94903774e-02, 1.82929644e-01,\n -1.88831279e-01, -1.51906577e-01, 3.36355412e-02, -2.17714198e-01,\n 2.96442576e-02, 1.74381885e-01, 5.04154706e-02, 6.94532932e-02,\n 2.51622327e-02, -1.06903041e-01, -1.77528637e-02, -1.50034023e-01,\n 4.98693332e-02, -1.31309781e-01, -4.77411196e-02, -4.96885289e-02,\n 3.51955442e-02, 5.43851885e-02, -5.49831514e-02, 1.51846982e-01,\n 1.04699021e-01, -1.56114813e-01, -1.07488924e-01, 2.64682826e-02,\n 3.37682615e-02, 8.60421263e-02, -1.55438597e-01, 3.98600566e-02,\n 3.07297320e-02, -1.22135190e-02, -1.70822352e-03, -4.26044393e-02,\n 3.87953782e-02, -1.53182955e-02, -6.28863950e-04, -5.57220787e-03,\n -1.30273486e-01, -3.26264534e-01, 1.82451807e-02, -1.60115306e-01,\n -9.35722392e-02, 1.96495344e-01, -3.30620598e-02, 4.76859741e-02,\n -1.37074339e-01, 1.78081099e-02, 3.26087859e-03, -2.64619982e-02,\n 6.22068593e-02, -3.39701237e-03, 2.05049863e-02, 1.70014332e-02,\n 2.82416366e-02, 1.62881104e-02, 2.76923717e-03, 2.76124769e-02,\n 2.30974987e-01, -7.56587314e-03, 2.40378787e-02, 9.72776579e-03,\n 8.45209271e-02, 1.87583601e-01, 1.56602196e-01, 5.56072973e-02,\n 1.28660786e-02, -1.34462053e-01, 1.60182800e-01, 1.97293985e-01,\n -4.77662618e-03, 4.96176853e-02, -1.14307436e-01, 4.00050841e-02,\n -1.04203324e-01, 1.35785953e-01, 5.52419882e-02, -1.13880908e-01,\n -1.60486821e-02, -4.20554160e-02, 6.52967185e-02, -7.65552960e-03,\n -2.68710882e-02, -2.20563839e-01, -2.38493082e-02, 5.21853432e-02,\n -6.26246110e-03, 1.47459704e-01, -3.58090537e-02, -1.70277743e-02,\n -6.12520678e-02, -2.08351816e-01, 6.82514998e-02, 1.60019521e-02,\n -5.35404407e-02, 5.23853300e-02, -1.52054552e-02, -3.99946556e-03,\n 1.06410686e-01, 6.12176415e-02, -1.00135389e-02, 7.98919753e-02,\n 8.42492591e-02, -2.33684226e-02, 1.92710022e-03, -1.52395046e-01,\n -6.02130886e-02, -4.04390164e-01, 8.14389252e-02, 1.11528212e-02,\n 1.41113408e-01, 1.91588984e-02, 3.09411164e-02, 7.73121706e-02,\n 1.45071058e-01, -1.94580336e-02, 1.04129185e-01, -1.04407806e-01,\n 8.01734280e-02, 3.11268634e-02, -4.24274530e-02, -5.08779702e-03,\n -1.93737647e-02, -5.16229228e-03, 2.54028430e-02, -1.01298745e-02,\n 7.55353708e-02, 1.08645139e-01, 5.36611122e-02, 1.94405402e-02,\n -2.23166908e-02, 5.39658123e-03, -1.32659833e-01, 7.44380419e-03,\n 5.52954061e-02, -1.34625830e-02, -1.00388514e-02, 6.37719357e-02,\n 1.17279293e-02, 1.24544553e-01, 5.47102439e-02, 1.17357442e-01,\n 3.06653238e-02, 1.43236992e-01, -1.25380679e-02, 6.25815611e-02,\n -9.57126389e-03, 2.01499036e-01, 1.13765496e-01, 2.27637719e-01,\n 1.45017205e-01, -6.27795457e-02, -1.04921763e-01, 2.54962024e-02,\n 1.58987983e-01, 2.24857273e-01, 1.67027165e-01, -2.40520974e-01,\n 1.21598936e-01, 1.45728623e-01, -2.78001364e-02, -2.78271517e-02,\n 4.25469973e-02, 3.04651712e-02, -6.63582021e-02, -1.34844836e-01,\n 1.42441905e-01, 2.89628981e-02, -2.26608719e-01, -2.92528879e-01,\n 2.80550068e-02, 4.34057938e-03, 8.62441275e-02, -9.17388108e-02,\n -2.56006471e-02, 1.67512527e-02, -2.95517259e-02, -7.51571635e-02,\n 1.07383670e-01, 1.18832451e-01, 9.44973007e-02, 7.00851549e-02,\n 4.71000352e-02, -9.61958625e-03, 5.94864960e-02, -1.17367429e-01,\n 2.60880939e-02, -9.03430427e-02, 1.10424236e-01, 1.25754657e-01,\n 1.18383834e-01, -1.10494172e-02, 7.32827837e-03, 3.16914422e-02,\n 3.48736807e-02, -1.11231309e-01, -2.32482607e-02, -1.47986003e-01,\n 1.32242949e-02, -6.97582681e-02, 8.40716012e-02, -7.11956826e-02,\n -1.21776996e-01, 2.84241614e-02, -1.72576215e-01, 4.41807046e-02,\n 1.12227351e-01, -7.75065931e-03, -9.12304268e-02, -1.80805693e-02,\n 1.89638142e-02, -1.68897879e-02, 8.82351935e-02, 1.26531544e-01,\n -9.01833761e-03, -9.60132250e-02, -6.06447246e-02, -5.76255967e-03,\n -2.52015173e-02, -1.22346526e-01, -8.29486240e-02, -3.35929825e-02,\n -2.76393702e-02, -1.03355084e-01, -2.55925096e-01, 2.23055109e-02,\n -8.38180262e-03, -3.08732974e-03, 8.21858655e-02, 3.11162374e-02,\n -5.11883455e-03, 4.76441753e-02, -1.21913247e-01, -9.55165164e-02,\n 1.09879578e-01, -1.17035041e-01, -3.18573931e-02, 3.30330402e-02,\n -9.09726702e-03, 1.58331014e-02, 5.26059468e-02, -2.33629446e-01,\n -3.04323315e-03, 9.08318664e-03, 3.91691372e-02, -2.05096823e-02,\n 5.59424187e-03, -1.28771489e-02, 3.02934032e-02, 1.97679966e-01,\n 8.43274088e-02, 4.45462666e-02, -3.46852706e-02, -5.14183581e-02,\n 1.08158896e-01, -2.99817906e-02, -4.89216956e-02, -1.94989673e-02,\n 2.40324031e-01, -1.72324660e-04, 7.26117513e-03, 5.37706601e-03,\n 6.76001377e-02, -9.38260311e-02, 5.78302568e-02, -2.78569487e-02,\n -5.46673523e-02, -6.32961152e-03, 4.80717692e-02, -3.44284233e-02,\n -4.48658561e-02, 1.58585884e-02, 1.45414114e-01, 5.05471880e-03,\n -1.50163061e-02, 2.36055130e-03, -4.91547641e-03, -2.70432437e-02,\n -6.60175834e-03, 7.37840862e-03, -1.12341289e-01, -3.37414857e-03,\n -5.01451131e-03, -5.00263334e-03, 2.61963243e-02, -1.05780349e-02,\n 6.43348450e-02, -2.70150453e-03, -2.77077241e-02, 9.94161275e-02,\n 1.40763461e-01, 1.39779551e-02, 5.69622231e-02, 7.94721048e-03,\n 2.34121675e-03, 6.52476308e-02, 9.12085774e-02, -5.67259165e-02,\n 3.83340473e-02, -1.66035907e-02, 3.81763185e-02, -5.12985421e-02,\n -3.64938851e-03, 1.07816499e-02, 1.30434258e-02, 1.25979059e-01,\n 7.64563665e-02, -7.87206717e-03, 1.98926487e-01, 8.85247401e-02,\n -8.18938134e-03, -1.74556013e-02, 5.87940263e-02, -2.72999682e-02,\n -5.47980205e-02, -1.10364597e-02, -2.84656620e-02, 1.40547526e-02,\n -4.02937501e-02, 7.50209986e-02, 3.31478955e-02, -1.08905755e-02,\n 2.74008607e-02, -4.35978787e-02, -5.33954415e-02, -6.95340120e-03,\n -1.16699919e-01, 8.47460588e-02, 1.14380811e-01, 1.23945130e-03,\n -1.59960649e-01, 9.43915722e-03, -4.87008212e-03, 9.45305865e-02,\n -1.13981605e-01, -4.33672441e-02, 7.48063932e-02, 7.25072193e-02,\n 3.13268834e-02, -4.33342743e-02, 7.97359067e-04, 9.35005998e-02,\n -1.47432484e-02, 1.10279296e-02, 1.55786395e-01, 1.11567181e-01,\n 8.57386804e-02, -7.32872741e-03, 3.95867474e-02, 3.26374406e-02,\n -9.30067100e-02, -1.53299184e-02, 4.81651283e-02, -3.95943723e-02,\n 6.93214650e-02, 1.26348342e-02, -6.18759221e-02, -3.57907167e-03,\n 1.45423480e-03, -1.75867704e-01, 2.25368965e-02, 4.16048593e-02,\n -4.38421898e-02, -4.92574417e-02, 6.57490593e-02, 1.68021756e-02,\n 9.58664560e-02, 5.61963564e-03, 9.92810375e-02, 2.21905380e-02,\n 2.36709125e-02, -3.13214991e-02, 8.61683492e-04, -1.32486006e-03,\n -4.48389161e-02, 7.06679553e-02, 7.78554220e-03, 8.66350679e-02,\n -1.54139412e-02, 1.81720727e-02, -4.45810749e-02, 4.35627662e-02,\n -1.59615372e-02, -3.38832215e-02, -4.73367115e-02, 2.63570857e-02,\n 3.64932049e-02, -3.09934523e-04, -2.69883639e-02, 9.61362667e-02,\n -7.15241036e-02, -5.65085507e-02, 5.30282132e-02, -3.57098678e-02,\n -5.40652110e-02, -1.05246189e-01, -8.21200142e-02, 3.98495075e-02,\n 3.90693922e-04, -2.49010052e-02, 5.50459078e-03, -7.99668745e-03,\n 3.98645539e-02, -5.65434227e-03, 2.88019933e-02, -7.76995318e-02,\n -1.18719477e-01, 2.08465140e-02]), 'label': '1w'}}", + "status": "success" + }, + "wavelet": { + "coeffs": "[[ 0.02328069+0.26052616j -0.20646269+0.21707895j -0.34924539-0.00701636j\n ... -0.25097443+0.39542646j -0.4658674 +0.05792538j\n -0.33212563-0.31214098j]\n [-0.05380191+0.28136408j -0.27530143+0.17218711j -0.35580267-0.10443455j\n ... -0.29294848+0.33406657j -0.45377476-0.01811872j\n -0.27502538-0.35805475j]\n [-0.14159683+0.27926617j -0.32962257+0.11214316j -0.33855591-0.21560006j\n ... -0.35441039+0.28241528j -0.45698499-0.09949252j\n -0.20063119-0.3801326j ]\n ...\n [ 0.77259572+0.56913313j 0.09758785-0.78071374j -1.63931615+2.88811983j\n ... -1.01527336-0.81246447j -0.80740554+0.29699673j\n -0.88811535+0.19742563j]\n [-3.71582342-1.56739578j 0.84204529+2.33937542j -0.73357428+0.85279372j\n ... 0.23236656+1.79168259j -0.95454735-0.74439472j\n -1.29585406+0.00785753j]\n [ 1.84842209-1.76757202j -0.20839682+3.25082443j -1.55862037+0.87078631j\n ... 0.50350641+1.02651633j -0.4299536 -0.54308497j\n -0.98618845+0.31493207j]]", + "power": "[[ 0.06841587 0.08975011 0.12202157 ... 0.21935025 0.22038779\n 0.20773942]\n [ 0.08206039 0.10543928 0.13750212 ... 0.19741928 0.20623982\n 0.20384217]\n [ 0.09803925 0.12122713 0.16110349 ... 0.20536512 0.21873404\n 0.18475367]\n ...\n [ 0.92081667 0.61903733 11.02859358 ... 1.6908785 0.74011076\n 0.82772576]\n [16.2640732 6.18171765 1.26538835 ... 3.26412073 1.46528414\n 1.67929949]\n [ 6.54097509 10.61128869 3.18756627 ... 1.30725448 0.47980138\n 1.07174987]]", + "periods": "[ 7. 7.14889947 7.30096623 7.45626766 7.61487256\n 7.7768512 7.94227535 8.11121829 8.28375487 8.45996154\n 8.63991637 8.82369908 9.0113911 9.20307557 9.39883744\n 9.59876343 9.80294211 10.01146395 10.22442133 10.44190861\n 10.66402213 10.8908603 11.12252364 11.35911476 11.6007385\n 11.8475019 12.09951429 12.35688733 12.61973504 12.88817387\n 13.16232277 13.44230318 13.72823915 14.02025737 14.31848721\n 14.6230608 14.93411309 15.25178187 15.57620791 15.90753492\n 16.24590971 16.59148218 16.94440545 17.30483588 17.67293315\n 18.04886034 18.43278402 18.82487427 19.22530481 19.63425305\n 20.05190018 20.47843122 20.91403515 21.35890497 21.81323778\n 22.27723485 22.75110177 23.23504849 23.7292894 24.23404349\n 24.74953437 25.27599045 25.81364496 26.36273611 26.92350717\n 27.49620659 28.0810881 28.67841083 29.28843942 29.91144415\n 30.54770103 31.19749196 31.86110481 32.53883361 33.23097862\n 33.93784649 34.6597504 35.39701017 36.14995246 36.91891086\n 37.70422603 38.50624593 39.32532587 40.16182875 41.01612517\n 41.88859364 42.77962069 43.6896011 44.61893801 45.56804319\n 46.53733711 47.52724922 48.53821811 49.57069167 50.62512734\n 51.70199228 52.8017636 53.92492854 55.07198472 56.24344033\n 57.43981439 58.66163695 59.90944932 61.18380435 62.48526664\n 63.81441279 65.17183167 66.5581247 67.97390605 69.41980298\n 70.8964561 72.40451963 73.94466171 75.51756469 77.12392545\n 78.76445568 80.4398822 82.15094731 83.89840909 85.68304175\n 87.50563596 89.36699921 91.26795618 93.20934907 95.19203802\n 97.21690144 99.28483644 101.39675923 103.55360546 105.75633073\n 108.00591095 110.30334279 112.6496441 115.04585442 117.49303538\n 119.99227118 122.54466911 125.15136 127.81349873 130.53226475\n 133.3088626 136.14452245 139.04050061 141.99808015 145.01857141\n 148.1033126 151.25367041 154.47104059 157.75684859 161.11255017\n 164.53963206 168.03961262 171.6140425 175.26450534 178.99261846\n 182.80003359 186.68843759 190.6595532 194.71513982 198.85699425\n 203.08695153 207.40688572 211.81871075 216.32438127 220.9258935\n 225.62528612 230.42464117 235.326085 240.33178917 245.44397145\n 250.66489675 255.9968782 261.4422781 267.00350903 272.68303486\n 278.48337189 284.40708994 290.45681348 296.63522282 302.94505529\n 309.38910644 315.97023126 322.69134552 329.55542697 336.56551671\n 343.72472055 351.03621034 358.50322541 366.12907398 373.91713468\n 381.87085796 389.99376769 398.28946271 406.76161837 415.41398825\n 424.25040574 433.27478579 442.49112661 451.90351146 461.51611047\n 471.33318247 481.35907687 491.5982356 502.0551951 512.73458826\n 523.64114657 534.77970213 546.15518983 557.77264954 569.63722834\n 581.75418277 594.12888122 606.76680625 619.67355704 632.85485188\n 646.31653068 660.06455761 674.10502367 688.44414944 703.08828781\n 718.04392681 733.31769248 748.91635182 764.84681573 781.11614217\n 797.73153919 814.70036818 832.03014712 849.72855389 867.80342973\n 886.26278262 905.11479092 924.36780694 944.03036065 964.11116349\n 984.61911216 1005.56329264 1026.95298418 1048.79766339 1071.10700847\n 1093.89090351 1117.15944282 1140.92293543 1165.19190968 1189.97711784\n 1215.28954091 1241.14039345 1267.54112861 1294.50344311 1322.03928252\n 1350.16084648 1378.88059415 1408.2112497 1438.16580797 1468.75754022\n 1500. ]", + "scales": "[ 7. 7.14889947 7.30096623 7.45626766 7.61487256\n 7.7768512 7.94227535 8.11121829 8.28375487 8.45996154\n 8.63991637 8.82369908 9.0113911 9.20307557 9.39883744\n 9.59876343 9.80294211 10.01146395 10.22442133 10.44190861\n 10.66402213 10.8908603 11.12252364 11.35911476 11.6007385\n 11.8475019 12.09951429 12.35688733 12.61973504 12.88817387\n 13.16232277 13.44230318 13.72823915 14.02025737 14.31848721\n 14.6230608 14.93411309 15.25178187 15.57620791 15.90753492\n 16.24590971 16.59148218 16.94440545 17.30483588 17.67293315\n 18.04886034 18.43278402 18.82487427 19.22530481 19.63425305\n 20.05190018 20.47843122 20.91403515 21.35890497 21.81323778\n 22.27723485 22.75110177 23.23504849 23.7292894 24.23404349\n 24.74953437 25.27599045 25.81364496 26.36273611 26.92350717\n 27.49620659 28.0810881 28.67841083 29.28843942 29.91144415\n 30.54770103 31.19749196 31.86110481 32.53883361 33.23097862\n 33.93784649 34.6597504 35.39701017 36.14995246 36.91891086\n 37.70422603 38.50624593 39.32532587 40.16182875 41.01612517\n 41.88859364 42.77962069 43.6896011 44.61893801 45.56804319\n 46.53733711 47.52724922 48.53821811 49.57069167 50.62512734\n 51.70199228 52.8017636 53.92492854 55.07198472 56.24344033\n 57.43981439 58.66163695 59.90944932 61.18380435 62.48526664\n 63.81441279 65.17183167 66.5581247 67.97390605 69.41980298\n 70.8964561 72.40451963 73.94466171 75.51756469 77.12392545\n 78.76445568 80.4398822 82.15094731 83.89840909 85.68304175\n 87.50563596 89.36699921 91.26795618 93.20934907 95.19203802\n 97.21690144 99.28483644 101.39675923 103.55360546 105.75633073\n 108.00591095 110.30334279 112.6496441 115.04585442 117.49303538\n 119.99227118 122.54466911 125.15136 127.81349873 130.53226475\n 133.3088626 136.14452245 139.04050061 141.99808015 145.01857141\n 148.1033126 151.25367041 154.47104059 157.75684859 161.11255017\n 164.53963206 168.03961262 171.6140425 175.26450534 178.99261846\n 182.80003359 186.68843759 190.6595532 194.71513982 198.85699425\n 203.08695153 207.40688572 211.81871075 216.32438127 220.9258935\n 225.62528612 230.42464117 235.326085 240.33178917 245.44397145\n 250.66489675 255.9968782 261.4422781 267.00350903 272.68303486\n 278.48337189 284.40708994 290.45681348 296.63522282 302.94505529\n 309.38910644 315.97023126 322.69134552 329.55542697 336.56551671\n 343.72472055 351.03621034 358.50322541 366.12907398 373.91713468\n 381.87085796 389.99376769 398.28946271 406.76161837 415.41398825\n 424.25040574 433.27478579 442.49112661 451.90351146 461.51611047\n 471.33318247 481.35907687 491.5982356 502.0551951 512.73458826\n 523.64114657 534.77970213 546.15518983 557.77264954 569.63722834\n 581.75418277 594.12888122 606.76680625 619.67355704 632.85485188\n 646.31653068 660.06455761 674.10502367 688.44414944 703.08828781\n 718.04392681 733.31769248 748.91635182 764.84681573 781.11614217\n 797.73153919 814.70036818 832.03014712 849.72855389 867.80342973\n 886.26278262 905.11479092 924.36780694 944.03036065 964.11116349\n 984.61911216 1005.56329264 1026.95298418 1048.79766339 1071.10700847\n 1093.89090351 1117.15944282 1140.92293543 1165.19190968 1189.97711784\n 1215.28954091 1241.14039345 1267.54112861 1294.50344311 1322.03928252\n 1350.16084648 1378.88059415 1408.2112497 1438.16580797 1468.75754022\n 1500. ]", + "global_spectrum": "[0.25077391 0.24918094 0.24941687 0.2504881 0.25240582 0.25525391\n 0.25898862 0.26376429 0.26935332 0.27455489 0.27947742 0.28353609\n 0.28676357 0.2891057 0.29210646 0.29362188 0.29412211 0.29445745\n 0.2939006 0.29286818 0.29179009 0.29204764 0.29293345 0.29365153\n 0.29497844 0.29571596 0.29647632 0.29805719 0.30002801 0.30242879\n 0.30747759 0.31185429 0.31553841 0.31908541 0.32174943 0.32216001\n 0.32193909 0.32039994 0.31822881 0.31398254 0.31506872 0.3158115\n 0.31656951 0.31765911 0.31945808 0.32277086 0.32437837 0.32459836\n 0.32487274 0.32467153 0.32209146 0.31883766 0.31417485 0.30792675\n 0.30683324 0.30430268 0.30232617 0.30232136 0.29807977 0.30136326\n 0.30111445 0.30160486 0.30229138 0.30617061 0.30775735 0.30909131\n 0.31023575 0.31078703 0.31346378 0.31258885 0.31289966 0.31232306\n 0.31093536 0.31629751 0.32231713 0.32760407 0.33524067 0.34372877\n 0.34958807 0.36029236 0.36393259 0.36960937 0.380321 0.37777465\n 0.38660412 0.3817282 0.38142149 0.37392835 0.3771821 0.36536764\n 0.35949935 0.35521001 0.35054834 0.3391412 0.33515301 0.33574682\n 0.33469351 0.33629778 0.32900688 0.33618414 0.33406263 0.33411697\n 0.33366681 0.3332418 0.33072821 0.33175012 0.33514366 0.34296791\n 0.35151023 0.35826434 0.36626216 0.37209976 0.3786771 0.39493223\n 0.41150026 0.41399706 0.4195743 0.44312145 0.45001722 0.43049709\n 0.43983845 0.48198567 0.46729729 0.47646645 0.44549643 0.45087622\n 0.44784329 0.46497273 0.49352648 0.49749856 0.53352332 0.51200799\n 0.53818475 0.54044329 0.55697902 0.69658938 0.62025399 0.5851625\n 0.73589538 0.60995301 0.63926042 0.86816171 0.70925519 0.71070872\n 0.67506702 0.70610452 0.76686938 0.70570503 0.85371279 1.03531524\n 0.93146292 0.78058382 0.78541885 0.9627667 0.86513844 0.94032968\n 0.87357484 0.97332314 0.96129918 1.09247097 1.04543466 0.96682145\n 1.53955322 1.42474782 1.19435845 1.15774524 1.14200367 1.30176847\n 1.38728933 1.22529162 1.76475319 1.58469429 1.53138518 1.7918166\n 1.6967658 1.93441562 1.75576069 1.58405978 1.98106888 1.7876563\n 1.82735277 2.28674511 1.80980915 1.89057293 1.98579934 2.02493933\n 1.92600972 1.50439865 1.67566079 1.35280685 1.87119419 2.0870223\n 1.65084514 1.95687734 2.11703605 1.82268409 2.13709538 1.78782023\n 1.93012932 2.22704236 2.16854292 1.96853606 1.95824631 2.23369913\n 2.47086236 2.41820332 2.67291022 2.67348578 3.03726617 2.83673764\n 3.00076609 3.20914749 3.50504162 3.02953861 3.72850302 3.70003235\n 2.7976817 2.72329216 3.83344964 3.2395254 2.80703328 2.93938568\n 3.33617831 3.11893059 3.2023908 3.57161901 3.99088314 4.31406106\n 3.26689451 3.57459583 3.45445192 4.07236594 3.52213288 4.06689934\n 3.91357891 4.1029707 4.72966818 3.5443605 4.87534288 5.63786981\n 4.27792425 4.83971537 5.11896333 4.99969839 4.98329126 5.04698897\n 6.30182074 5.70438178 5.23567811 5.3025015 5.92358113 5.82026112\n 5.34002515 5.36422926 4.77090983 6.78411209]", + "significance_threshold": "[0.32059109 0.32034576 0.32137139 0.32171169 0.3220394 0.3227787\n 0.32306636 0.32249046 0.32356305 0.32383931 0.32605108 0.32601491\n 0.32628265 0.32602384 0.32773452 0.3286617 0.32924628 0.33012448\n 0.33098881 0.33207269 0.33070675 0.33293743 0.33429595 0.33480052\n 0.33646451 0.33624654 0.33512066 0.33478793 0.33532374 0.33647977\n 0.3400494 0.34252272 0.34458403 0.34862861 0.34935883 0.35120582\n 0.35081204 0.34946446 0.34929904 0.34946795 0.35308668 0.35610222\n 0.3579281 0.36080829 0.36106964 0.35990912 0.35948469 0.36032976\n 0.35942677 0.35875676 0.35674629 0.35553062 0.35524292 0.35246702\n 0.35605134 0.35819701 0.36111867 0.36493847 0.36667499 0.3682861\n 0.37045654 0.37230951 0.37206124 0.37122094 0.3719268 0.37178344\n 0.37241458 0.37394713 0.3753374 0.37411819 0.37298609 0.37195877\n 0.37223742 0.3745387 0.37716889 0.37940813 0.38298291 0.3862863\n 0.39371023 0.39464904 0.39854882 0.40354847 0.40812076 0.41172165\n 0.41732554 0.42056548 0.4233097 0.42751974 0.42677551 0.42958672\n 0.43227243 0.43071772 0.42819891 0.43353045 0.43623476 0.43194615\n 0.42764474 0.42722706 0.42466364 0.42352605 0.42591561 0.42125877\n 0.41894647 0.41495988 0.41193899 0.41269935 0.41338079 0.42186647\n 0.42928977 0.43681649 0.44421849 0.45074203 0.46380284 0.4718612\n 0.48261419 0.49096699 0.50047583 0.50858729 0.51469839 0.52897375\n 0.54216927 0.55237461 0.5678475 0.58039907 0.59365508 0.61248644\n 0.62331872 0.63103024 0.65519679 0.66627606 0.68233508 0.71176567\n 0.72366062 0.73370075 0.75579744 0.78790309 0.78706514 0.80643025\n 0.88957624 0.8349449 0.86191608 0.88844233 0.90740232 0.92514995\n 0.95153783 0.95524355 1.00592679 0.98984328 1.01116049 1.03465135\n 1.0656006 1.07812401 1.10734688 1.09903608 1.14475211 1.15672434\n 1.20196582 1.21460134 1.2232702 1.28082091 1.30846799 1.32987165\n 1.35210738 1.3752512 1.39705735 1.43532667 1.45979443 1.48527367\n 1.50267643 1.55414828 1.57960198 1.60310296 1.64576765 1.6554778\n 1.70885242 1.73032155 1.79524331 1.82102073 1.82422713 1.86346766\n 1.92354131 1.9586259 2.01676233 2.07146309 2.08322202 2.11523072\n 2.20025718 2.18479054 2.27146889 2.2990042 2.37795339 2.4261683\n 2.45638761 2.46214359 2.57676944 2.56274466 2.69367552 2.68364644\n 2.73173025 2.8275726 2.86944395 2.87803218 3.0358048 3.02160946\n 3.11173506 3.13930219 3.24274685 3.24195306 3.34297808 3.43492652\n 3.56552477 3.47321863 3.61978421 3.62160822 3.72593593 3.7702992\n 3.88460804 3.98525763 4.06289566 4.26717868 4.16014696 4.27487866\n 4.34735961 4.40921197 4.45520602 4.57869407 4.70453082 4.76210103\n 4.81253173 4.85567132 5.01397897 5.12493253 5.12322935 5.26596318\n 5.2912091 5.4959322 5.51322923 5.66887711 5.72748205 5.84904821\n 5.92549917 6.03547683 6.14720246 6.19921027 6.29156422 6.27575138\n 6.53942774 6.50943472 6.61774326 6.6675835 6.8285217 6.79276376\n 7.14321363 7.17137905 7.37121113 7.26783884]", + "significant_periods": [ + { + "period": 632.854851875512, + "power": 3.7285030183071055, + "threshold": 3.7259359318502976, + "ratio": 1.0006889776162986 + }, + { + "period": 315.9702312638088, + "power": 2.2867451103683614, + "threshold": 1.9586258959940284, + "ratio": 1.1675252099165208 + }, + { + "period": 296.63522282351886, + "power": 1.9810688755923727, + "threshold": 1.8242271344913545, + "ratio": 1.085977090317073 + }, + { + "period": 278.48337189110833, + "power": 1.9344156199117137, + "threshold": 1.7303215470604576, + "ratio": 1.1179515294125417 + }, + { + "period": 267.0035090282511, + "power": 1.791816604081105, + "threshold": 1.655477804875396, + "ratio": 1.0823561625557228 + }, + { + "period": 250.66489674822904, + "power": 1.7647531853264709, + "threshold": 1.579601980196533, + "ratio": 1.11721383452995 + }, + { + "period": 211.818710750956, + "power": 1.5395532153660547, + "threshold": 1.3521073845934857, + "ratio": 1.1386323548768467 + }, + { + "period": 161.11255016597912, + "power": 1.0353152362298805, + "threshold": 1.0346513496469452, + "ratio": 1.0006416524592192 + } + ], + "key_period_power": "{30: {'power': array([0.22918997, 0.28504621, 0.25108058, ..., 0.06011753, 0.09682399,\n 0.08969407]), 'actual_period': 29.911444149464828}, 90: {'power': array([0.01491735, 0.01706459, 0.09584873, ..., 0.23423086, 0.09229694,\n 0.31491783]), 'actual_period': 89.3669992111722}, 365: {'power': array([0.13578548, 2.4333446 , 1.01885187, ..., 1.05534137, 0.46123795,\n 0.19825597]), 'actual_period': 366.1290739845146}, 1400: {'power': array([3.1543086 , 2.39629301, 3.47997683, ..., 6.31334402, 6.21208785,\n 4.25926692]), 'actual_period': 1408.2112496976965}}", + "coi_periods": "[1. 1.41421356 2.82842712 ... 2.82842712 1.41421356 1. ]", + "ar1_alpha": -0.04993111698604457, + "dates": "DatetimeIndex(['2017-08-18', '2017-08-19', '2017-08-20', '2017-08-21',\n '2017-08-22', '2017-08-23', '2017-08-24', '2017-08-25',\n '2017-08-26', '2017-08-27',\n ...\n '2026-01-23', '2026-01-24', '2026-01-25', '2026-01-26',\n '2026-01-27', '2026-01-28', '2026-01-29', '2026-01-30',\n '2026-01-31', '2026-02-01'],\n dtype='datetime64[ns]', name='datetime', length=3090, freq=None)", + "wavelet": "cmor1.5-1.0", + "signal_length": 3090, + "status": "success" + }, + "acf": { + "acf": "{'log_return': {'values': array([ 1.00000000e+00, -4.99311170e-02, 4.57749631e-02, 4.83708574e-03,\n 9.46251081e-03, 2.22693693e-02, 9.49020710e-03, -8.86443864e-03,\n -2.40845498e-02, 1.02819105e-02, 4.51758386e-02, -1.24242901e-02,\n 2.36526371e-03, 1.86696403e-02, -9.53146602e-03, 1.38683198e-02,\n -2.56086002e-02, 4.51782774e-02, -3.99563475e-03, 1.36648595e-02,\n 2.77474974e-02, -2.53052682e-02, -9.74322012e-03, -2.73115464e-02,\n 2.31136072e-02, 1.82907358e-02, 4.81710118e-03, 3.39146483e-03,\n 1.15691911e-02, -3.52202094e-02, 1.81525109e-02, 2.71625506e-02,\n -2.64690669e-02, 4.56467919e-02, -9.91307736e-03, 9.77528668e-05,\n -3.35170412e-02, 3.07773202e-02, 2.45121097e-03, 1.44379805e-02,\n 2.52359747e-02, -9.38786512e-03, 3.80632484e-03, 3.13717354e-02,\n 3.81689260e-02, -1.15791437e-02, -3.44874692e-02, 6.24004757e-03,\n 4.77409795e-03, -2.97030031e-02, 3.47922553e-03, -1.50718504e-02,\n 2.88881955e-03, 8.95437558e-03, 9.79159362e-03, 2.13849797e-02,\n 7.12672096e-03, 2.26820122e-03, 2.56756942e-02, 3.61415657e-02,\n -3.63628183e-02, -2.36357127e-02, -1.28902589e-02, -1.33605795e-02,\n -2.60550324e-03, 4.62823643e-02, -2.61581171e-02, 2.95217336e-02,\n -6.61831079e-03, -2.04441594e-02, 2.55784878e-02, -2.93033879e-03,\n -1.74829568e-02, -6.62495078e-03, 3.58046103e-03, 3.57117130e-02,\n -7.59544339e-03, 4.63077308e-03, 4.58066027e-03, -2.57933008e-03,\n 2.60163524e-02, -1.07131082e-02, 2.77795645e-02, -2.05483151e-02,\n 1.79392452e-02, 5.21385651e-03, -9.56107310e-04, 1.60853228e-02,\n -3.01915143e-02, -6.75758697e-03, -4.26058723e-03, 8.92553823e-03,\n 2.90220417e-02, -2.72513636e-02, -1.61091292e-02, -2.47893124e-03,\n -2.19665856e-02, 1.91883085e-02, -2.94662228e-02, 2.16478164e-02,\n 1.98360572e-03]), 'confint': array([[ 1.00000000e+00, 1.00000000e+00],\n [-8.51900245e-02, -1.46722095e-02],\n [ 1.04282604e-02, 8.11216658e-02],\n [-3.05832365e-02, 4.02574080e-02],\n [-2.59586326e-02, 4.48836542e-02],\n [-1.31549166e-02, 5.76936551e-02],\n [-2.59514786e-02, 4.49318928e-02],\n [-4.43092834e-02, 2.65804061e-02],\n [-5.95321505e-02, 1.13630510e-02],\n [-2.51860280e-02, 4.57498490e-02],\n [ 9.70419483e-03, 8.06474825e-02],\n [-4.79673888e-02, 2.31188086e-02],\n [-3.31832337e-02, 3.79137611e-02],\n [-1.68790528e-02, 5.42183333e-02],\n [-4.50923465e-02, 2.60294144e-02],\n [-2.16957365e-02, 4.94323762e-02],\n [-6.11793791e-02, 9.96217864e-03],\n [ 9.58458584e-03, 8.07719690e-02],\n [-3.96605443e-02, 3.16692748e-02],\n [-2.20006066e-02, 4.93303255e-02],\n [-7.92447683e-03, 6.34194717e-02],\n [-6.10040647e-02, 1.03935283e-02],\n [-4.54643097e-02, 2.59778695e-02],\n [-6.30359396e-02, 8.41284692e-03],\n [-1.26367343e-02, 5.88639487e-02],\n [-1.74781786e-02, 5.40596503e-02],\n [-3.09634391e-02, 4.05976414e-02],\n [-3.23898816e-02, 3.91728113e-02],\n [-2.42125550e-02, 4.73509372e-02],\n [-7.10066055e-02, 5.66186707e-04],\n [-1.76769520e-02, 5.39819738e-02],\n [-8.67834373e-03, 6.30034450e-02],\n [-6.23355438e-02, 9.39741009e-03],\n [ 9.75603881e-03, 8.15375450e-02],\n [-4.58759312e-02, 2.60497765e-02],\n [-3.58684978e-02, 3.60640036e-02],\n [-6.94832922e-02, 2.44920984e-03],\n [-5.22774046e-03, 6.67823809e-02],\n [-3.35865415e-02, 3.84889634e-02],\n [-2.15999792e-02, 5.04759403e-02],\n [-1.08091753e-02, 6.12811247e-02],\n [-4.54549734e-02, 2.66792432e-02],\n [-3.22638212e-02, 3.98764708e-02],\n [-4.69890998e-03, 6.74423807e-02],\n [ 2.06437618e-03, 7.42734758e-02],\n [-4.77338231e-02, 2.45755357e-02],\n [-7.06467586e-02, 1.67182015e-03],\n [-2.99601109e-02, 4.24402060e-02],\n [-3.14273977e-02, 4.09755936e-02],\n [-6.59052815e-02, 6.49927522e-03],\n [-3.27533374e-02, 3.97117884e-02],\n [-5.13048286e-02, 2.11611278e-02],\n [-3.33519520e-02, 3.91295911e-02],\n [-2.72866822e-02, 4.51954334e-02],\n [-2.64522145e-02, 4.60354018e-02],\n [-1.48621169e-02, 5.76320763e-02],\n [-2.91360572e-02, 4.33894991e-02],\n [-3.39963181e-02, 3.85327205e-02],\n [-1.05890015e-02, 6.19403899e-02],\n [-1.45722381e-04, 7.24288538e-02],\n [-7.26948293e-02, -3.08073324e-05],\n [-6.00129398e-02, 1.27415144e-02],\n [-4.92865727e-02, 2.35060549e-02],\n [-4.97625684e-02, 2.30414094e-02],\n [-3.90135878e-02, 3.38025814e-02],\n [ 9.87404787e-03, 8.26906807e-02],\n [-6.26395024e-02, 1.03232682e-02],\n [-6.98296159e-03, 6.60264288e-02],\n [-4.31526746e-02, 2.99160530e-02],\n [-5.69800136e-02, 1.60916949e-02],\n [-1.09715856e-02, 6.21285611e-02],\n [-3.95026589e-02, 3.36419813e-02],\n [-5.40555688e-02, 1.90896552e-02],\n [-4.32079512e-02, 2.99580496e-02],\n [-3.30040309e-02, 4.01649529e-02],\n [-8.73214556e-04, 7.22966405e-02],\n [-4.42236821e-02, 2.90327953e-02],\n [-3.19994236e-02, 4.12609698e-02],\n [-3.20502642e-02, 4.12115848e-02],\n [-3.92109667e-02, 3.40523065e-02],\n [-1.06155100e-02, 6.26482148e-02],\n [-4.73679340e-02, 2.59417175e-02],\n [-8.87915358e-03, 6.44382826e-02],\n [-5.72331943e-02, 1.61365641e-02],\n [-1.87599401e-02, 5.46384304e-02],\n [-3.14962287e-02, 4.19239417e-02],\n [-3.76671131e-02, 3.57548985e-02],\n [-2.06257139e-02, 5.27963596e-02],\n [-6.69113119e-02, 6.52828336e-03],\n [-4.35082325e-02, 2.99930585e-02],\n [-4.10127774e-02, 3.24916030e-02],\n [-2.78272660e-02, 4.56783425e-02],\n [-7.73345715e-03, 6.57775406e-02],\n [-6.40353401e-02, 9.53261280e-03],\n [-5.29181960e-02, 2.06999377e-02],\n [-3.92967615e-02, 3.43388991e-02],\n [-5.87846234e-02, 1.48514521e-02],\n [-1.76460187e-02, 5.60226358e-02],\n [-6.63129747e-02, 7.38052908e-03],\n [-1.52282185e-02, 5.85238513e-02],\n [-3.49082245e-02, 3.88754359e-02]]), 'significant_lags': [1, 2, 10, 17, 33, 44, 59, 60, 65, 75], 'n_obs': 3090, 'threshold': np.float64(0.03525955538509657)}, 'squared_return': {'values': array([ 1.00000000e+00, 1.02653192e-01, 3.20545399e-02, 2.29973442e-02,\n 7.78292151e-02, 4.34819920e-02, 3.30282872e-02, 6.67284036e-02,\n 2.35056717e-02, 1.98387597e-02, 2.98393393e-02, 5.66689263e-02,\n 2.47920754e-02, 1.04139545e-02, 2.87428229e-02, 4.24149402e-02,\n 3.45524415e-02, 3.06341072e-02, 2.67352816e-02, 2.09007391e-02,\n 2.57768613e-02, 4.33097679e-02, 1.37203718e-02, 2.03443463e-02,\n 3.05603266e-02, 4.28286931e-02, 1.40305762e-02, 1.54338134e-02,\n 1.92783134e-02, 3.06205711e-02, 1.18403307e-02, 1.70852974e-02,\n 1.84187526e-02, 1.48458009e-02, 7.62125866e-03, 3.41023023e-02,\n 2.62772331e-02, 2.09576181e-02, 1.37041975e-02, 1.72937635e-02,\n 2.70472006e-02, 3.70961355e-02, 9.38186857e-03, 4.29858164e-03,\n 2.32871014e-02, 2.39570419e-02, 1.60131530e-02, 9.24196843e-03,\n 5.48078835e-02, 5.81256896e-03, 4.63221537e-03, 1.46050136e-03,\n 7.96728343e-03, 7.11812679e-03, 9.99116446e-03, 2.54949418e-03,\n 4.19762237e-02, 1.40952448e-02, 3.13433925e-02, 2.98914714e-02,\n 1.94419913e-02, 1.20048936e-02, 3.18753266e-02, 1.12525941e-02,\n 1.22923275e-02, 1.12236197e-02, 1.85317299e-02, 1.09289717e-02,\n 2.21909607e-03, 8.50253557e-03, 2.19780239e-02, 2.27763020e-03,\n 1.44769808e-02, 5.75677585e-03, 2.85303209e-03, 2.86174334e-04,\n -2.20485889e-03, 1.17541113e-02, 7.21400106e-03, 2.70018625e-03,\n 3.14322385e-03, 3.10666008e-02, 2.18093183e-02, 2.08393812e-02,\n 2.29260992e-02, 2.81165093e-02, 2.45944498e-02, -5.17530450e-04,\n 5.83012550e-03, 6.37845587e-03, 9.85075304e-04, 1.67279255e-02,\n 7.53665602e-03, 7.01917059e-03, 8.25443902e-03, 1.06326000e-02,\n 6.99491171e-03, 4.28281196e-03, 1.03125233e-02, 9.49174507e-03,\n 7.27489475e-03]), 'confint': array([[ 1.00000000e+00, 1.00000000e+00],\n [ 6.73942847e-02, 1.37912100e-01],\n [-3.57397731e-03, 6.76830571e-02],\n [-1.26670075e-02, 5.86616959e-02],\n [ 4.21464325e-02, 1.13511998e-01],\n [ 7.58879010e-03, 7.93751939e-02],\n [-2.93034045e-03, 6.89869149e-02],\n [ 3.07320814e-02, 1.02724726e-01],\n [-1.26441039e-02, 5.96554473e-02],\n [-1.63300120e-02, 5.60075314e-02],\n [-6.34295785e-03, 6.60216364e-02],\n [ 2.04560493e-02, 9.28818033e-02],\n [-1.15308807e-02, 6.11150316e-02],\n [-2.59300325e-02, 4.67579416e-02],\n [-7.60487364e-03, 6.50905194e-02],\n [ 6.03899808e-03, 7.87908823e-02],\n [-1.88493258e-03, 7.09898157e-02],\n [-5.84397733e-03, 6.71121917e-02],\n [-9.77477168e-03, 6.32453349e-02],\n [-1.56336446e-02, 5.74351229e-02],\n [-1.07723842e-02, 6.23261068e-02],\n [ 6.73792879e-03, 7.98816070e-02],\n [-2.29151740e-02, 5.03559175e-02],\n [-1.62975869e-02, 5.69862795e-02],\n [-6.09564647e-03, 6.72162997e-02],\n [ 6.14105921e-03, 7.95163269e-02],\n [-2.27191618e-02, 5.07803141e-02],\n [-2.13225833e-02, 5.21902102e-02],\n [-1.74861391e-02, 5.60427658e-02],\n [-6.15644669e-03, 6.73975888e-02],\n [-2.49683682e-02, 4.86490296e-02],\n [-1.97281361e-02, 5.38987309e-02],\n [-1.84045374e-02, 5.52420425e-02],\n [-2.19889407e-02, 5.16805425e-02],\n [-2.92209207e-02, 4.44634380e-02],\n [-2.74183697e-03, 7.09464416e-02],\n [-1.06061260e-02, 6.31605922e-02],\n [-1.59490074e-02, 5.78642436e-02],\n [-2.32172201e-02, 5.06256151e-02],\n [-1.96339772e-02, 5.42215042e-02],\n [-9.89060720e-03, 6.39850084e-02],\n [ 1.33714553e-04, 7.40585564e-02],\n [-2.76268078e-02, 4.63905450e-02],\n [-3.27130514e-02, 4.13102146e-02],\n [-1.37251523e-02, 6.02993550e-02],\n [-1.30734220e-02, 6.09875058e-02],\n [-2.10365743e-02, 5.30628803e-02],\n [-2.78163620e-02, 4.63002988e-02],\n [ 1.77466879e-02, 9.18690792e-02],\n [-3.13492538e-02, 4.29743918e-02],\n [-3.25307377e-02, 4.17951684e-02],\n [-3.57031695e-02, 3.86241722e-02],\n [-2.91964588e-02, 4.51310256e-02],\n [-3.00477388e-02, 4.42839924e-02],\n [-2.71763959e-02, 4.71587248e-02],\n [-3.46214049e-02, 3.97203933e-02],\n [ 4.80510717e-03, 7.91473402e-02],\n [-2.31347554e-02, 5.13252450e-02],\n [-5.89324136e-03, 6.85800263e-02],\n [-7.37794687e-03, 6.71608897e-02],\n [-1.78572194e-02, 5.67412021e-02],\n [-2.53069135e-02, 4.93167007e-02],\n [-5.44128210e-03, 6.91919352e-02],\n [-2.60978481e-02, 4.86030364e-02],\n [-2.50623290e-02, 4.96469840e-02],\n [-2.61360653e-02, 4.85833046e-02],\n [-1.88321466e-02, 5.58956064e-02],\n [-2.64463296e-02, 4.83042731e-02],\n [-3.51601780e-02, 3.95983702e-02],\n [-2.88769023e-02, 4.58819735e-02],\n [-1.54038183e-02, 5.93598660e-02],\n [-3.51202726e-02, 3.96755330e-02],\n [-2.29210944e-02, 5.18750560e-02],\n [-3.16482657e-02, 4.31618174e-02],\n [-3.45531109e-02, 4.02591751e-02],\n [-3.71202392e-02, 3.76925878e-02],\n [-3.96112751e-02, 3.52015573e-02],\n [-2.56524665e-02, 4.91606891e-02],\n [-3.01971681e-02, 4.46251702e-02],\n [-3.47127122e-02, 4.01130847e-02],\n [-3.42699169e-02, 4.05563646e-02],\n [-6.34686821e-03, 6.84800699e-02],\n [-1.56362069e-02, 5.92548435e-02],\n [-1.66219321e-02, 5.83006945e-02],\n [-1.45496233e-02, 6.04018218e-02],\n [-9.37664526e-03, 6.56096638e-02],\n [-1.29249081e-02, 6.21138077e-02],\n [-3.80569257e-02, 3.70218648e-02],\n [-3.17092786e-02, 4.33695296e-02],\n [-3.11620739e-02, 4.39189856e-02],\n [-3.65568017e-02, 3.85269524e-02],\n [-2.08139836e-02, 5.42698347e-02],\n [-3.00145183e-02, 4.50878303e-02],\n [-3.05338842e-02, 4.45722254e-02],\n [-2.93002467e-02, 4.58091248e-02],\n [-2.69243412e-02, 4.81895412e-02],\n [-3.05657715e-02, 4.45555949e-02],\n [-3.32794907e-02, 4.18451146e-02],\n [-2.72503864e-02, 4.78754330e-02],\n [-2.80746842e-02, 4.70581744e-02],\n [-3.02945159e-02, 4.48443054e-02]]), 'significant_lags': [1, 4, 5, 7, 11, 15, 21, 25, 41, 48, 56], 'n_obs': 3090, 'threshold': np.float64(0.03525955538509657)}, 'abs_return': {'values': array([1. , 0.16941215, 0.11681494, 0.11477814, 0.18185448,\n 0.14259819, 0.14312719, 0.13894497, 0.12687252, 0.10913528,\n 0.10631101, 0.12944533, 0.11684757, 0.09762454, 0.15017366,\n 0.12411898, 0.12326963, 0.11562807, 0.0844657 , 0.07607039,\n 0.09505224, 0.16106874, 0.07148222, 0.09370097, 0.113692 ,\n 0.11214878, 0.07064554, 0.09680625, 0.10452395, 0.09941853,\n 0.06644419, 0.07644115, 0.10051518, 0.07849206, 0.07073167,\n 0.1368152 , 0.10616077, 0.07564097, 0.07883957, 0.07680061,\n 0.07310946, 0.11918992, 0.07922182, 0.06456951, 0.08403174,\n 0.07692813, 0.08377337, 0.04391864, 0.10519398, 0.07786352,\n 0.05243764, 0.02742507, 0.04606311, 0.05652268, 0.04697355,\n 0.04920116, 0.12268232, 0.0759553 , 0.09233128, 0.05483661,\n 0.06063155, 0.05068447, 0.10495384, 0.07299428, 0.05869396,\n 0.06155175, 0.06108528, 0.05599143, 0.04059884, 0.04826835,\n 0.09459542, 0.04167287, 0.06421634, 0.03641472, 0.0238428 ,\n 0.02949051, 0.028975 , 0.07587434, 0.04076047, 0.02183433,\n 0.04071859, 0.07915313, 0.04777162, 0.06885369, 0.07274957,\n 0.04513606, 0.07586587, 0.0313361 , 0.03066215, 0.03402811,\n 0.02781086, 0.07376816, 0.04940179, 0.03161297, 0.05145948,\n 0.06577359, 0.02750272, 0.03582021, 0.06441121, 0.03604022,\n 0.03358751]), 'confint': array([[ 1.00000000e+00, 1.00000000e+00],\n [ 1.34153246e-01, 2.04671061e-01],\n [ 8.05582047e-02, 1.53071676e-01],\n [ 7.80564948e-02, 1.51499789e-01],\n [ 1.44689510e-01, 2.19019451e-01],\n [ 1.04342965e-01, 1.80853416e-01],\n [ 1.04216766e-01, 1.82037610e-01],\n [ 9.93854553e-02, 1.78504490e-01],\n [ 8.67108828e-02, 1.67034149e-01],\n [ 6.84784368e-02, 1.49792129e-01],\n [ 6.52915878e-02, 1.47330437e-01],\n [ 8.80847870e-02, 1.70805869e-01],\n [ 7.49864184e-02, 1.58708731e-01],\n [ 5.53598547e-02, 1.39889230e-01],\n [ 1.07629564e-01, 1.92717764e-01],\n [ 8.09209100e-02, 1.67317058e-01],\n [ 7.96304592e-02, 1.66908809e-01],\n [ 7.15581367e-02, 1.59698007e-01],\n [ 4.00202076e-02, 1.28911190e-01],\n [ 3.14257836e-02, 1.20714992e-01],\n [ 5.02467872e-02, 1.39857694e-01],\n [ 1.16013302e-01, 2.06124187e-01],\n [ 2.57165398e-02, 1.17247899e-01],\n [ 4.77967033e-02, 1.39605246e-01],\n [ 6.75505582e-02, 1.59833433e-01],\n [ 6.56603885e-02, 1.58637179e-01],\n [ 2.38220132e-02, 1.17469073e-01],\n [ 4.98503969e-02, 1.43762100e-01],\n [ 5.73206374e-02, 1.51727268e-01],\n [ 5.19283470e-02, 1.46908710e-01],\n [ 1.86959667e-02, 1.14192413e-01],\n [ 2.85781179e-02, 1.24304181e-01],\n [ 5.25006120e-02, 1.48529739e-01],\n [ 3.02166086e-02, 1.26767506e-01],\n [ 2.22978210e-02, 1.19165516e-01],\n [ 8.82531058e-02, 1.85377291e-01],\n [ 5.71218244e-02, 1.55199710e-01],\n [ 2.63171452e-02, 1.24964795e-01],\n [ 2.93717487e-02, 1.28307398e-01],\n [ 2.71768192e-02, 1.26424393e-01],\n [ 2.33381275e-02, 1.22880796e-01],\n [ 6.92852573e-02, 1.69094584e-01],\n [ 2.89645069e-02, 1.29479134e-01],\n [ 1.41571878e-02, 1.14981834e-01],\n [ 3.35167098e-02, 1.34546776e-01],\n [ 2.62396159e-02, 1.27616650e-01],\n [ 3.29399180e-02, 1.34606825e-01],\n [-7.08615530e-03, 9.49234398e-02],\n [ 5.41421874e-02, 1.56245767e-01],\n [ 2.65429673e-02, 1.29184069e-01],\n [ 9.70431440e-04, 1.03904842e-01],\n [-2.41085090e-02, 7.89586539e-02],\n [-5.48861036e-03, 9.76148350e-02],\n [ 4.91981281e-03, 1.08125544e-01],\n [-4.70622811e-03, 9.86533242e-02],\n [-2.53167160e-03, 1.00933984e-01],\n [ 7.08913550e-02, 1.74473292e-01],\n [ 2.38042974e-02, 1.28106298e-01],\n [ 4.00429278e-02, 1.44619622e-01],\n [ 2.34596598e-03, 1.07327256e-01],\n [ 8.06973624e-03, 1.13193368e-01],\n [-1.96422361e-03, 1.03333163e-01],\n [ 5.22445180e-02, 1.57663154e-01],\n [ 2.00257931e-02, 1.25962764e-01],\n [ 5.60057060e-03, 1.11787355e-01],\n [ 8.37775031e-03, 1.14725742e-01],\n [ 7.82277750e-03, 1.14347775e-01],\n [ 2.64190697e-03, 1.09340951e-01],\n [-1.28236898e-02, 9.40213645e-02],\n [-5.19251627e-03, 1.01729224e-01],\n [ 4.10803944e-02, 1.48110436e-01],\n [-1.20496255e-02, 9.53953621e-02],\n [ 1.04536716e-02, 1.17979004e-01],\n [-1.74432220e-02, 9.02726533e-02],\n [-3.00457398e-02, 7.77313351e-02],\n [-2.44111395e-02, 8.33921614e-02],\n [-2.49467077e-02, 8.28967029e-02],\n [ 2.19332808e-02, 1.29815397e-01],\n [-1.33131085e-02, 9.48340436e-02],\n [-3.22774314e-02, 7.59460881e-02],\n [-1.34041188e-02, 9.48413041e-02],\n [ 2.49923475e-02, 1.33313912e-01],\n [-6.53277812e-03, 1.02076025e-01],\n [ 1.44970700e-02, 1.23210313e-01],\n [ 1.82846279e-02, 1.27214510e-01],\n [-9.44954947e-03, 9.97216733e-02],\n [ 2.12338768e-02, 1.30497858e-01],\n [-2.34267105e-02, 8.60989043e-02],\n [-2.41229492e-02, 8.54472398e-02],\n [-2.07783124e-02, 8.88345370e-02],\n [-2.70218246e-02, 8.26435428e-02],\n [ 1.89179440e-02, 1.28618377e-01],\n [-5.57162947e-03, 1.04375204e-01],\n [-2.34156124e-02, 8.66415478e-02],\n [-3.59167249e-03, 1.06510634e-01],\n [ 1.06626737e-02, 1.20884515e-01],\n [-2.77057056e-02, 8.27111426e-02],\n [-1.94052402e-02, 9.10456682e-02],\n [ 9.15688357e-03, 1.19665545e-01],\n [-1.93073728e-02, 9.13878221e-02],\n [-2.17892566e-02, 8.89642734e-02]]), 'significant_lags': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 77, 78, 80, 81, 82, 83, 84, 85, 86, 91, 92, 94, 95, 97, 98, 99], 'n_obs': 3090, 'threshold': np.float64(0.03525955538509657)}, 'volume': {'values': array([1. , 0.89231835, 0.81972046, 0.79411199, 0.78488161,\n 0.76746046, 0.78558329, 0.80074225, 0.7502537 , 0.69843297,\n 0.68093924, 0.67189199, 0.67136443, 0.69291745, 0.71696258,\n 0.68159883, 0.64649686, 0.64016457, 0.63638299, 0.63722759,\n 0.6702784 , 0.6956126 , 0.66121152, 0.62442741, 0.62038527,\n 0.62485345, 0.63041244, 0.65331817, 0.67503497, 0.64368851,\n 0.60795348, 0.60475173, 0.60388998, 0.60859536, 0.63361714,\n 0.65690603, 0.62538197, 0.5897418 , 0.58138651, 0.58239673,\n 0.58570772, 0.61105092, 0.63535735, 0.60272863, 0.56910026,\n 0.55028958, 0.54658496, 0.55471161, 0.5798828 , 0.59119837,\n 0.55674306, 0.52942871, 0.5216846 , 0.51598195, 0.52168578,\n 0.55186523, 0.57864299, 0.54795346, 0.52391621, 0.52105344,\n 0.51781606, 0.51474923, 0.53668783, 0.55946177, 0.53080459,\n 0.50084144, 0.48232368, 0.47273645, 0.47226484, 0.49453748,\n 0.51165976, 0.48139221, 0.45445747, 0.44718943, 0.43952767,\n 0.44420806, 0.46662036, 0.48865304, 0.46132897, 0.4369049 ,\n 0.43427533, 0.42918134, 0.42685324, 0.44946594, 0.47015197,\n 0.44810237, 0.42646501, 0.4187618 , 0.41185523, 0.41157762,\n 0.43753807, 0.46203514, 0.43947459, 0.41311037, 0.40156217,\n 0.40221022, 0.4031838 , 0.43138235, 0.45709229, 0.43832808,\n 0.41973737]), 'confint': array([[1. , 1. ],\n [0.85706515, 0.92757155],\n [0.76295881, 0.8764821 ],\n [0.72416882, 0.86405516],\n [0.70451068, 0.86525253],\n [0.67806976, 0.85685117],\n [0.68834805, 0.88281853],\n [0.69591552, 0.90556898],\n [0.63808256, 0.86242485],\n [0.58018979, 0.81667615],\n [0.55767556, 0.80420292],\n [0.54403879, 0.7997452 ],\n [0.53919587, 0.80353299],\n [0.55657651, 0.82925839],\n [0.57631314, 0.85761202],\n [0.5364784 , 0.82671926],\n [0.49745096, 0.79554276],\n [0.48767344, 0.79265571],\n [0.48058773, 0.79217825],\n [0.47823457, 0.79622061],\n [0.50814243, 0.83241436],\n [0.53006873, 0.86115647],\n [0.49207404, 0.830349 ],\n [0.45210741, 0.79674741],\n [0.44527578, 0.79549475],\n [0.44703338, 0.80267351],\n [0.44988418, 0.81094069],\n [0.47007444, 0.83656191],\n [0.48891895, 0.86115099],\n [0.45455422, 0.8328228 ],\n [0.41611594, 0.79979102],\n [0.41053451, 0.79896896],\n [0.40734643, 0.80043352],\n [0.40975921, 0.80743151],\n [0.43247927, 0.83475501],\n [0.45330267, 0.86050939],\n [0.41916141, 0.83160253],\n [0.38117758, 0.79830602],\n [0.37076005, 0.79201298],\n [0.36978521, 0.79500824],\n [0.37112271, 0.80029274],\n [0.39448819, 0.82761365],\n [0.41666238, 0.85405231],\n [0.38175157, 0.8237057 ],\n [0.34608944, 0.79211109],\n [0.32548111, 0.77509804],\n [0.32010865, 0.77306128],\n [0.32660176, 0.78282146],\n [0.35010263, 0.80966297],\n [0.35960662, 0.82279011],\n [0.32328325, 0.79020287],\n [0.29432465, 0.76453277],\n [0.2851035 , 0.75826569],\n [0.27797548, 0.75398841],\n [0.28229315, 0.7610784 ],\n [0.31106387, 0.79266659],\n [0.3362749 , 0.82101108],\n [0.30387452, 0.7920324 ],\n [0.27831321, 0.76951921],\n [0.27406539, 0.76804148],\n [0.26946566, 0.76616645],\n [0.26506065, 0.76443781],\n [0.28568388, 0.78769177],\n [0.30703572, 0.81188782],\n [0.27684222, 0.78476697],\n [0.245504 , 0.75617889],\n [0.22576823, 0.73887913],\n [0.21505655, 0.73041636],\n [0.21350934, 0.73102034],\n [0.23471297, 0.75436199],\n [0.25066806, 0.77265146],\n [0.21915686, 0.74362757],\n [0.19112615, 0.71778879],\n [0.18288518, 0.71149367],\n [0.17428477, 0.70477057],\n [0.17806153, 0.71035458],\n [0.19955403, 0.7336867 ],\n [0.22057539, 0.75673068],\n [0.19214662, 0.73051131],\n [0.16674175, 0.70706805],\n [0.1632355 , 0.70531515],\n [0.15727814, 0.70108455],\n [0.15410943, 0.69959706],\n [0.17589315, 0.72303873],\n [0.19566298, 0.74464096],\n [0.1726144 , 0.72359035],\n [0.15007269, 0.70285734],\n [0.1415529 , 0.6959707 ],\n [0.13386125, 0.6898492 ],\n [0.13282636, 0.69032888],\n [0.15803259, 0.71704355],\n [0.18167974, 0.74239054],\n [0.15817446, 0.72077472],\n [0.13095825, 0.6952625 ],\n [0.11865934, 0.684465 ],\n [0.1185999 , 0.68582055],\n [0.11886547, 0.68750214],\n [0.14635435, 0.71641036],\n [0.17125404, 0.74293054],\n [0.15158285, 0.7250733 ],\n [0.13216062, 0.70731411]]), 'significant_lags': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100], 'n_obs': 3091, 'threshold': np.float64(0.03525385133986227)}}", + "pacf": "{'log_return': {'values': array([ 1.00000000e+00, -4.99311170e-02, 4.33900230e-02, 9.23036809e-03,\n 8.18649253e-03, 2.25859092e-02, 1.08753469e-02, -1.00537506e-02,\n -2.64333041e-02, 8.16874978e-03, 4.80345725e-02, -8.72829103e-03,\n -2.23183314e-03, 2.03449106e-02, -8.43022566e-03, 8.60247795e-03,\n -2.51125774e-02, 4.36334443e-02, 3.77581992e-03, 8.26840455e-03,\n 2.71619216e-02, -2.20098621e-02, -1.70741813e-02, -2.99492331e-02,\n 2.19931901e-02, 2.42602576e-02, 7.32939669e-03, 4.41252105e-04,\n 1.34148338e-02, -3.79342601e-02, 6.55922416e-03, 3.46333098e-02,\n -2.36390122e-02, 4.56576583e-02, -6.47888130e-03, -5.76066449e-03,\n -3.46499714e-02, 2.10708312e-02, 9.73902402e-03, 1.62381715e-02,\n 2.76939727e-02]), 'confint': array([[ 1.00000000e+00, 1.00000000e+00],\n [-8.51900245e-02, -1.46722095e-02],\n [ 8.13111555e-03, 7.86489305e-02],\n [-2.60285394e-02, 4.44892756e-02],\n [-2.70724150e-02, 4.34454000e-02],\n [-1.26729983e-02, 5.78448166e-02],\n [-2.43835606e-02, 4.61342544e-02],\n [-4.53126581e-02, 2.52051569e-02],\n [-6.16922115e-02, 8.82560342e-03],\n [-2.70901577e-02, 4.34276573e-02],\n [ 1.27756650e-02, 8.32934800e-02],\n [-4.39871985e-02, 2.65306165e-02],\n [-3.74907406e-02, 3.30270743e-02],\n [-1.49139968e-02, 5.56038181e-02],\n [-4.36891331e-02, 2.68286818e-02],\n [-2.66564295e-02, 4.38613854e-02],\n [-6.03714849e-02, 1.01463301e-02],\n [ 8.37453685e-03, 7.88923518e-02],\n [-3.14830876e-02, 3.90347274e-02],\n [-2.69905029e-02, 4.35273120e-02],\n [-8.09698588e-03, 6.24208291e-02],\n [-5.72687696e-02, 1.32490454e-02],\n [-5.23330888e-02, 1.81847262e-02],\n [-6.52081405e-02, 5.30967443e-03],\n [-1.32657174e-02, 5.72520976e-02],\n [-1.09986498e-02, 5.95191651e-02],\n [-2.79295108e-02, 4.25883042e-02],\n [-3.48176554e-02, 3.57001596e-02],\n [-2.18440737e-02, 4.86737413e-02],\n [-7.31931676e-02, -2.67535262e-03],\n [-2.86996833e-02, 4.18181316e-02],\n [-6.25597633e-04, 6.98922173e-02],\n [-5.88979196e-02, 1.16198953e-02],\n [ 1.03987508e-02, 8.09165658e-02],\n [-4.17377888e-02, 2.87800262e-02],\n [-4.10195720e-02, 2.94982430e-02],\n [-6.99088789e-02, 6.08936041e-04],\n [-1.41880763e-02, 5.63297386e-02],\n [-2.55198835e-02, 4.49979315e-02],\n [-1.90207359e-02, 5.14970790e-02],\n [-7.56493478e-03, 6.29528802e-02]]), 'significant_lags': [1, 2, 10, 17, 29, 33], 'n_obs': 3090}, 'squared_return': {'values': array([ 1.00000000e+00, 1.02653192e-01, 2.17460146e-02, 1.77413548e-02,\n 7.39038779e-02, 2.79217712e-02, 2.24279580e-02, 5.83814243e-02,\n 3.96823112e-03, 9.01011557e-03, 2.07117331e-02, 4.13952079e-02,\n 8.07840032e-03, -5.34218188e-04, 1.84199368e-02, 2.80457870e-02,\n 1.98428487e-02, 1.80050750e-02, 1.09748160e-02, 7.03584386e-03,\n 1.40689820e-02, 2.89451441e-02, -5.60858789e-03, 9.39476228e-03,\n 1.91062551e-02, 2.62675594e-02, -2.86436891e-03, 3.41980066e-03,\n 5.21343161e-03, 1.74205386e-02, -2.36957364e-03, 4.82802442e-03,\n 3.86515697e-03, 3.46754946e-03, -2.44553615e-03, 2.35198824e-02,\n 9.35939171e-03, 9.89788821e-03, 3.32702025e-03, 3.93295112e-03,\n 1.35836465e-02]), 'confint': array([[ 1. , 1. ],\n [ 0.06739428, 0.1379121 ],\n [-0.01351289, 0.05700492],\n [-0.01751755, 0.05300026],\n [ 0.03864497, 0.10916279],\n [-0.00733714, 0.06318068],\n [-0.01283095, 0.05768687],\n [ 0.02312252, 0.09364033],\n [-0.03129068, 0.03922714],\n [-0.02624879, 0.04426902],\n [-0.01454717, 0.05597064],\n [ 0.0061363 , 0.07665412],\n [-0.02718051, 0.04333731],\n [-0.03579313, 0.03472469],\n [-0.01683897, 0.05367884],\n [-0.00721312, 0.06330469],\n [-0.01541606, 0.05510176],\n [-0.01725383, 0.05326398],\n [-0.02428409, 0.04623372],\n [-0.02822306, 0.04229475],\n [-0.02118993, 0.04932789],\n [-0.00631376, 0.06420405],\n [-0.0408675 , 0.02965032],\n [-0.02586415, 0.04465367],\n [-0.01615265, 0.05436516],\n [-0.00899135, 0.06152647],\n [-0.03812328, 0.03239454],\n [-0.03183911, 0.03867871],\n [-0.03004548, 0.04047234],\n [-0.01783837, 0.05267945],\n [-0.03762848, 0.03288933],\n [-0.03043088, 0.04008693],\n [-0.03139375, 0.03912406],\n [-0.03179136, 0.03872646],\n [-0.03770444, 0.03281337],\n [-0.01173903, 0.05877879],\n [-0.02589952, 0.0446183 ],\n [-0.02536102, 0.0451568 ],\n [-0.03193189, 0.03858593],\n [-0.03132596, 0.03919186],\n [-0.02167526, 0.04884255]]), 'significant_lags': [1, 4, 7, 11], 'n_obs': 3090}, 'abs_return': {'values': array([ 1.00000000e+00, 1.69412153e-01, 9.07181160e-02, 8.45160567e-02,\n 1.48113259e-01, 8.36243602e-02, 8.39548850e-02, 7.37673497e-02,\n 5.10596543e-02, 3.28447583e-02, 2.96940137e-02, 5.42549634e-02,\n 3.63184226e-02, 1.85683191e-02, 8.05149603e-02, 3.77250817e-02,\n 4.12392165e-02, 3.41284438e-02, -9.72034046e-03, -9.84520886e-03,\n 1.27001117e-02, 8.39925053e-02, -2.28472785e-02, 2.13091973e-02,\n 4.15301452e-02, 2.18423321e-02, -1.18171075e-02, 2.07553150e-02,\n 1.81763460e-02, 1.51906758e-02, -1.32874581e-02, -9.00555399e-04,\n 2.38174973e-02, 2.25403203e-03, 3.63227988e-03, 6.64400444e-02,\n 2.52184620e-02, -3.92201324e-03, 3.82418903e-03, -6.13910297e-03,\n -4.26325672e-03]), 'confint': array([[ 1. , 1. ],\n [ 0.13415325, 0.20467106],\n [ 0.05545921, 0.12597702],\n [ 0.04925715, 0.11977496],\n [ 0.11285435, 0.18337217],\n [ 0.04836545, 0.11888327],\n [ 0.04869598, 0.11921379],\n [ 0.03850844, 0.10902626],\n [ 0.01580075, 0.08631856],\n [-0.00241415, 0.06810367],\n [-0.00556489, 0.06495292],\n [ 0.01899606, 0.08951387],\n [ 0.00105952, 0.07157733],\n [-0.01669059, 0.05382723],\n [ 0.04525605, 0.11577387],\n [ 0.00246617, 0.07298399],\n [ 0.00598031, 0.07649812],\n [-0.00113046, 0.06938735],\n [-0.04497925, 0.02553857],\n [-0.04510412, 0.0254137 ],\n [-0.0225588 , 0.04795902],\n [ 0.0487336 , 0.11925141],\n [-0.05810619, 0.01241163],\n [-0.01394971, 0.0565681 ],\n [ 0.00627124, 0.07678905],\n [-0.01341658, 0.05710124],\n [-0.04707601, 0.0234418 ],\n [-0.01450359, 0.05601422],\n [-0.01708256, 0.05343525],\n [-0.02006823, 0.05044958],\n [-0.04854637, 0.02197145],\n [-0.03615946, 0.03435835],\n [-0.01144141, 0.0590764 ],\n [-0.03300488, 0.03751294],\n [-0.03162663, 0.03889119],\n [ 0.03118114, 0.10169895],\n [-0.01004045, 0.06047737],\n [-0.03918092, 0.03133689],\n [-0.03143472, 0.0390831 ],\n [-0.04139801, 0.0291198 ],\n [-0.03952216, 0.03099565]]), 'significant_lags': [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 21, 24, 35], 'n_obs': 3090}, 'volume': {'values': array([ 1. , 0.89231835, 0.11527043, 0.21942261, 0.1554976 ,\n 0.06485283, 0.25620594, 0.13648006, -0.19802398, -0.08229763,\n 0.00989658, 0.00234771, 0.09028939, 0.12117182, 0.13904393,\n -0.08325209, -0.00542368, 0.03812697, -0.01864103, 0.03616058,\n 0.13651273, 0.07230708, -0.08350945, -0.0322421 , 0.02475962,\n 0.04246932, 0.0395711 , 0.03403851, 0.06132399, -0.0559987 ,\n -0.02640301, 0.0326686 , -0.02576092, 0.03724004, 0.05686875,\n 0.06370599, -0.04903855, -0.03191649, -0.01561977, 0.00630843,\n 0.00846462]), 'confint': array([[ 1.00000000e+00, 1.00000000e+00],\n [ 8.57065146e-01, 9.27571553e-01],\n [ 8.00172271e-02, 1.50523634e-01],\n [ 1.84169404e-01, 2.54675811e-01],\n [ 1.20244394e-01, 1.90750801e-01],\n [ 2.95996237e-02, 1.00106031e-01],\n [ 2.20952737e-01, 2.91459144e-01],\n [ 1.01226860e-01, 1.71733267e-01],\n [-2.33277182e-01, -1.62770775e-01],\n [-1.17550835e-01, -4.70444278e-02],\n [-2.53566232e-02, 4.51497839e-02],\n [-3.29054919e-02, 3.76009152e-02],\n [ 5.50361839e-02, 1.25542591e-01],\n [ 8.59186213e-02, 1.56425028e-01],\n [ 1.03790727e-01, 1.74297134e-01],\n [-1.18505292e-01, -4.79988851e-02],\n [-4.06768818e-02, 2.98295253e-02],\n [ 2.87376303e-03, 7.33801701e-02],\n [-5.38942318e-02, 1.66121753e-02],\n [ 9.07379314e-04, 7.14137864e-02],\n [ 1.01259525e-01, 1.71765933e-01],\n [ 3.70538724e-02, 1.07560279e-01],\n [-1.18762654e-01, -4.82562473e-02],\n [-6.74953046e-02, 3.01110252e-03],\n [-1.04935824e-02, 6.00128247e-02],\n [ 7.21611805e-03, 7.77225251e-02],\n [ 4.31790064e-03, 7.48243077e-02],\n [-1.21469134e-03, 6.92917157e-02],\n [ 2.60707872e-02, 9.65771943e-02],\n [-9.12519074e-02, -2.07455003e-02],\n [-6.16562097e-02, 8.85019736e-03],\n [-2.58460841e-03, 6.79217987e-02],\n [-6.10141262e-02, 9.49228091e-03],\n [ 1.98683953e-03, 7.24932466e-02],\n [ 2.16155489e-02, 9.21219560e-02],\n [ 2.84527896e-02, 9.89591967e-02],\n [-8.42917577e-02, -1.37853506e-02],\n [-6.71696908e-02, 3.33671624e-03],\n [-5.08729734e-02, 1.96334337e-02],\n [-2.89447760e-02, 4.15616311e-02],\n [-2.67885833e-02, 4.37178238e-02]]), 'significant_lags': [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 17, 19, 20, 21, 22, 25, 26, 28, 29, 33, 34, 35, 36], 'n_obs': 3091}}", + "ljungbox": "{'log_return': lag lb_stat lb_pvalue\n0 10 25.059139 0.005235\n1 20 38.928469 0.006805\n2 50 87.268713 0.000866\n3 100 148.676050 0.001151, 'squared_return': lag lb_stat lb_pvalue\n0 10 84.891973 5.482156e-14\n1 20 117.535801 8.139704e-16\n2 50 172.418996 2.287873e-15\n3 100 211.175390 6.046088e-10, 'abs_return': lag lb_stat lb_pvalue\n0 10 582.314852 1.081991e-118\n1 20 981.305481 3.779643e-195\n2 50 1767.938519 0.000000e+00\n3 100 2294.606367 0.000000e+00, 'volume': lag lb_stat lb_pvalue\n0 10 18825.923581 0.0\n1 20 32655.505952 0.0\n2 50 67729.164244 0.0\n3 100 103242.290924 0.0}", + "periodic_patterns": { + "log_return": [ + { + "period": 2, + "hits": [ + 1, + 10, + 17, + 17, + 33, + 33, + 44, + 59, + 59, + 65, + 65, + 75, + 75 + ], + "count": 13, + "fft_note": "若FFT频谱在 f=0.5000 (1/2天) 处存在峰值,则交叉验证通过" + }, + { + "period": 3, + "hits": [ + 2, + 10, + 17, + 33, + 44, + 59, + 65, + 75 + ], + "count": 8, + "fft_note": "若FFT频谱在 f=0.3333 (1/3天) 处存在峰值,则交叉验证通过" + }, + { + "period": 5, + "hits": [ + 10, + 44, + 59, + 65, + 75 + ], + "count": 5, + "fft_note": "若FFT频谱在 f=0.2000 (1/5天) 处存在峰值,则交叉验证通过" + }, + { + "period": 11, + "hits": [ + 10, + 33, + 44, + 65 + ], + "count": 4, + "fft_note": "若FFT频谱在 f=0.0909 (1/11天) 处存在峰值,则交叉验证通过" + } + ], + "squared_return": [ + { + "period": 2, + "hits": [ + 1, + 4, + 5, + 7, + 11, + 11, + 15, + 15, + 21, + 21, + 25, + 25, + 41, + 41, + 48, + 56 + ], + "count": 16, + "fft_note": "若FFT频谱在 f=0.5000 (1/2天) 处存在峰值,则交叉验证通过" + }, + { + "period": 3, + "hits": [ + 4, + 5, + 11, + 15, + 21, + 25, + 41, + 48, + 56 + ], + "count": 9, + "fft_note": "若FFT频谱在 f=0.3333 (1/3天) 处存在峰值,则交叉验证通过" + }, + { + "period": 5, + "hits": [ + 4, + 11, + 15, + 21, + 25, + 41, + 56 + ], + "count": 7, + "fft_note": "若FFT频谱在 f=0.2000 (1/5天) 处存在峰值,则交叉验证通过" + }, + { + "period": 7, + "hits": [ + 7, + 15, + 21, + 41, + 48, + 56 + ], + "count": 6, + "fft_note": "若FFT频谱在 f=0.1429 (1/7天) 处存在峰值,则交叉验证通过" + }, + { + "period": 11, + "hits": [ + 11, + 21, + 56 + ], + "count": 3, + "fft_note": "若FFT频谱在 f=0.0909 (1/11天) 处存在峰值,则交叉验证通过" + } + ], + "abs_return": [ + { + "period": 2, + "hits": [ + 1, + 3, + 5, + 7, + 9, + 11, + 13, + 15, + 17, + 19, + 21, + 23, + 25, + 27, + 29, + 31, + 33, + 35, + 37, + 39, + 41, + 43, + 45, + 47, + 49, + 52, + 53, + 55, + 57, + 59, + 61, + 63, + 65, + 67, + 69, + 71, + 73, + 77, + 77, + 80, + 81, + 83, + 85, + 91, + 91, + 94, + 95, + 97, + 99 + ], + "count": 49, + "fft_note": "若FFT频谱在 f=0.5000 (1/2天) 处存在峰值,则交叉验证通过" + }, + { + "period": 3, + "hits": [ + 2, + 5, + 8, + 11, + 14, + 17, + 20, + 23, + 26, + 29, + 32, + 35, + 38, + 41, + 44, + 47, + 50, + 53, + 56, + 59, + 62, + 65, + 68, + 71, + 77, + 80, + 83, + 86, + 91, + 92, + 95, + 98 + ], + "count": 32, + "fft_note": "若FFT频谱在 f=0.3333 (1/3天) 处存在峰值,则交叉验证通过" + }, + { + "period": 5, + "hits": [ + 4, + 9, + 14, + 19, + 24, + 29, + 34, + 39, + 44, + 49, + 54, + 59, + 64, + 69, + 80, + 84, + 91, + 94, + 99 + ], + "count": 19, + "fft_note": "若FFT频谱在 f=0.2000 (1/5天) 处存在峰值,则交叉验证通过" + }, + { + "period": 7, + "hits": [ + 6, + 13, + 20, + 27, + 34, + 41, + 48, + 55, + 62, + 69, + 77, + 83, + 91, + 97 + ], + "count": 14, + "fft_note": "若FFT频谱在 f=0.1429 (1/7天) 处存在峰值,则交叉验证通过" + }, + { + "period": 11, + "hits": [ + 10, + 21, + 32, + 43, + 54, + 65, + 77, + 98 + ], + "count": 8, + "fft_note": "若FFT频谱在 f=0.0909 (1/11天) 处存在峰值,则交叉验证通过" + }, + { + "period": 13, + "hits": [ + 12, + 25, + 38, + 52, + 64, + 77, + 91 + ], + "count": 7, + "fft_note": "若FFT频谱在 f=0.0769 (1/13天) 处存在峰值,则交叉验证通过" + }, + { + "period": 17, + "hits": [ + 16, + 33, + 50, + 67, + 84 + ], + "count": 5, + "fft_note": "若FFT频谱在 f=0.0588 (1/17天) 处存在峰值,则交叉验证通过" + }, + { + "period": 19, + "hits": [ + 18, + 37, + 56, + 77, + 94 + ], + "count": 5, + "fft_note": "若FFT频谱在 f=0.0526 (1/19天) 处存在峰值,则交叉验证通过" + }, + { + "period": 23, + "hits": [ + 22, + 45, + 68, + 91 + ], + "count": 4, + "fft_note": "若FFT频谱在 f=0.0435 (1/23天) 处存在峰值,则交叉验证通过" + }, + { + "period": 29, + "hits": [ + 28, + 57, + 86 + ], + "count": 3, + "fft_note": "若FFT频谱在 f=0.0345 (1/29天) 处存在峰值,则交叉验证通过" + }, + { + "period": 31, + "hits": [ + 30, + 61, + 92 + ], + "count": 3, + "fft_note": "若FFT频谱在 f=0.0323 (1/31天) 处存在峰值,则交叉验证通过" + } + ], + "volume": [ + { + "period": 2, + "hits": [ + 1, + 3, + 5, + 7, + 9, + 11, + 13, + 15, + 17, + 19, + 21, + 23, + 25, + 27, + 29, + 31, + 33, + 35, + 37, + 39, + 41, + 43, + 45, + 47, + 49, + 51, + 53, + 55, + 57, + 59, + 61, + 63, + 65, + 67, + 69, + 71, + 73, + 75, + 77, + 79, + 81, + 83, + 85, + 87, + 89, + 91, + 93, + 95, + 97, + 99 + ], + "count": 50, + "fft_note": "若FFT频谱在 f=0.5000 (1/2天) 处存在峰值,则交叉验证通过" + }, + { + "period": 3, + "hits": [ + 2, + 5, + 8, + 11, + 14, + 17, + 20, + 23, + 26, + 29, + 32, + 35, + 38, + 41, + 44, + 47, + 50, + 53, + 56, + 59, + 62, + 65, + 68, + 71, + 74, + 77, + 80, + 83, + 86, + 89, + 92, + 95, + 98 + ], + "count": 33, + "fft_note": "若FFT频谱在 f=0.3333 (1/3天) 处存在峰值,则交叉验证通过" + }, + { + "period": 5, + "hits": [ + 4, + 9, + 14, + 19, + 24, + 29, + 34, + 39, + 44, + 49, + 54, + 59, + 64, + 69, + 74, + 79, + 84, + 89, + 94, + 99 + ], + "count": 20, + "fft_note": "若FFT频谱在 f=0.2000 (1/5天) 处存在峰值,则交叉验证通过" + }, + { + "period": 7, + "hits": [ + 6, + 13, + 20, + 27, + 34, + 41, + 48, + 55, + 62, + 69, + 76, + 83, + 90, + 97 + ], + "count": 14, + "fft_note": "若FFT频谱在 f=0.1429 (1/7天) 处存在峰值,则交叉验证通过" + }, + { + "period": 11, + "hits": [ + 10, + 21, + 32, + 43, + 54, + 65, + 76, + 87, + 98 + ], + "count": 9, + "fft_note": "若FFT频谱在 f=0.0909 (1/11天) 处存在峰值,则交叉验证通过" + }, + { + "period": 13, + "hits": [ + 12, + 25, + 38, + 51, + 64, + 77, + 90 + ], + "count": 7, + "fft_note": "若FFT频谱在 f=0.0769 (1/13天) 处存在峰值,则交叉验证通过" + }, + { + "period": 17, + "hits": [ + 16, + 33, + 50, + 67, + 84 + ], + "count": 5, + "fft_note": "若FFT频谱在 f=0.0588 (1/17天) 处存在峰值,则交叉验证通过" + }, + { + "period": 19, + "hits": [ + 18, + 37, + 56, + 75, + 94 + ], + "count": 5, + "fft_note": "若FFT频谱在 f=0.0526 (1/19天) 处存在峰值,则交叉验证通过" + }, + { + "period": 23, + "hits": [ + 22, + 45, + 68, + 91 + ], + "count": 4, + "fft_note": "若FFT频谱在 f=0.0435 (1/23天) 处存在峰值,则交叉验证通过" + }, + { + "period": 29, + "hits": [ + 28, + 57, + 86 + ], + "count": 3, + "fft_note": "若FFT频谱在 f=0.0345 (1/29天) 处存在峰值,则交叉验证通过" + }, + { + "period": 31, + "hits": [ + 30, + 61, + 92 + ], + "count": 3, + "fft_note": "若FFT频谱在 f=0.0323 (1/31天) 处存在峰值,则交叉验证通过" + } + ] + }, + "summary": "{'log_return': {'label': '对数收益率', 'acf_significant_count': 10, 'pacf_significant_count': 6, 'ljungbox_rejects_white_noise': np.True_, 'periodic_patterns_count': 4, 'periodic_periods': [2, 3, 5, 11]}, 'squared_return': {'label': '平方收益率', 'acf_significant_count': 11, 'pacf_significant_count': 4, 'ljungbox_rejects_white_noise': np.True_, 'periodic_patterns_count': 5, 'periodic_periods': [2, 3, 5, 7, 11]}, 'abs_return': {'label': '绝对收益率', 'acf_significant_count': 88, 'pacf_significant_count': 16, 'ljungbox_rejects_white_noise': np.True_, 'periodic_patterns_count': 11, 'periodic_periods': [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]}, 'volume': {'label': '成交量', 'acf_significant_count': 100, 'pacf_significant_count': 26, 'ljungbox_rejects_white_noise': np.True_, 'periodic_patterns_count': 11, 'periodic_periods': [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]}}", + "status": "success" + }, + "returns": { + "normality": { + "ks_statistic": 0.09736697106568132, + "ks_pvalue": 5.971577286037212e-26, + "jb_statistic": 31996.30395577554, + "jb_pvalue": 0.0, + "ad_statistic": 64.17928613929007, + "ad_critical_values": { + "15.0%": 0.575, + "10.0%": 0.655, + "5.0%": 0.786, + "2.5%": 0.917, + "1.0%": 1.091 + } + }, + "fat_tail": { + "excess_kurtosis": 15.645612143331558, + "skewness": -0.9656348742170849, + "exceed_3sigma_actual": 0.015533980582524271, + "exceed_3sigma_normal": 0.002699796063260207, + "exceed_3sigma_ratio": 5.753760735455633, + "exceed_4sigma_actual": 0.005501618122977346, + "exceed_4sigma_normal": 6.334248366623996e-05, + "exceed_4sigma_ratio": 86.85510583964641 + }, + "multi_timeframe": "{'1h': datetime\n2017-08-17 05:00:00 0.001505\n2017-08-17 06:00:00 0.002090\n2017-08-17 07:00:00 0.005912\n2017-08-17 08:00:00 0.002457\n2017-08-17 09:00:00 0.018925\n ... \n2026-02-01 19:00:00 -0.011011\n2026-02-01 20:00:00 -0.000930\n2026-02-01 21:00:00 -0.007512\n2026-02-01 22:00:00 0.009407\n2026-02-01 23:00:00 -0.003646\nName: close, Length: 74052, dtype: float64, '4h': datetime\n2017-08-17 08:00:00 0.017616\n2017-08-17 12:00:00 -0.017076\n2017-08-17 16:00:00 -0.006248\n2017-08-17 20:00:00 -0.009326\n2017-08-18 00:00:00 0.001704\n ... \n2026-02-01 04:00:00 -0.006682\n2026-02-01 08:00:00 0.005100\n2026-02-01 12:00:00 -0.014714\n2026-02-01 16:00:00 -0.005410\n2026-02-01 20:00:00 -0.002680\nName: close, Length: 18527, dtype: float64, '1d': datetime\n2017-08-18 -0.042113\n2017-08-19 0.007665\n2017-08-20 -0.013053\n2017-08-21 -0.017351\n2017-08-22 0.005958\n ... \n2026-01-28 0.000560\n2026-01-29 -0.053474\n2026-01-30 -0.004614\n2026-01-31 -0.067748\n2026-02-01 -0.022773\nName: close, Length: 3090, dtype: float64, '1w': datetime\n2017-08-21 0.053303\n2017-08-28 0.045153\n2017-09-04 -0.087726\n2017-09-11 -0.110037\n2017-09-18 -0.010862\n ... \n2026-01-05 -0.005654\n2026-01-12 0.028802\n2026-01-19 -0.077700\n2026-01-26 -0.118719\n2026-02-02 0.020847\nName: close, Length: 434, dtype: float64}", + "garch": "{'model_summary': ' Constant Mean - GARCH Model Results \\n==============================================================================\\nDep. Variable: close R-squared: 0.000\\nMean Model: Constant Mean Adj. R-squared: 0.000\\nVol Model: GARCH Log-Likelihood: -8091.64\\nDistribution: Normal AIC: 16191.3\\nMethod: Maximum Likelihood BIC: 16215.4\\n No. Observations: 3090\\nDate: Tue, Feb 03 2026 Df Residuals: 3089\\nTime: 11:15:47 Df Model: 1\\n Mean Model \\n==========================================================================\\n coef std err t P>|t| 95.0% Conf. Int.\\n--------------------------------------------------------------------------\\nmu 0.1295 5.806e-02 2.231 2.568e-02 [1.573e-02, 0.243]\\n Volatility Model \\n==========================================================================\\n coef std err t P>|t| 95.0% Conf. Int.\\n--------------------------------------------------------------------------\\nomega 0.4388 0.207 2.121 3.393e-02 [3.329e-02, 0.844]\\nalpha[1] 0.0962 4.760e-02 2.022 4.319e-02 [2.944e-03, 0.190]\\nbeta[1] 0.8768 4.647e-02 18.866 2.158e-79 [ 0.786, 0.968]\\n==========================================================================\\n\\nCovariance estimator: robust', 'omega': np.float64(0.43881933719318955), 'alpha': np.float64(0.09623144766619043), 'beta': np.float64(0.876807221573444), 'persistence': np.float64(0.9730386692396344), 'log_likelihood': -8091.636710514733, 'aic': 16191.273421029466, 'bic': np.float64(16215.417126509034), 'conditional_volatility': datetime\n2017-08-18 0.045564\n2017-08-19 0.045227\n2017-08-20 0.042910\n2017-08-21 0.040965\n2017-08-22 0.039354\n ... \n2026-01-28 0.024847\n2026-01-29 0.024192\n2026-01-30 0.029081\n2026-01-31 0.028085\n2026-02-01 0.034557\nName: cond_vol, Length: 3090, dtype: float64, 'result_obj': Constant Mean - GARCH Model Results \n==============================================================================\nDep. Variable: close R-squared: 0.000\nMean Model: Constant Mean Adj. R-squared: 0.000\nVol Model: GARCH Log-Likelihood: -8091.64\nDistribution: Normal AIC: 16191.3\nMethod: Maximum Likelihood BIC: 16215.4\n No. Observations: 3090\nDate: Tue, Feb 03 2026 Df Residuals: 3089\nTime: 11:15:47 Df Model: 1\n Mean Model \n==========================================================================\n coef std err t P>|t| 95.0% Conf. Int.\n--------------------------------------------------------------------------\nmu 0.1295 5.806e-02 2.231 2.568e-02 [1.573e-02, 0.243]\n Volatility Model \n==========================================================================\n coef std err t P>|t| 95.0% Conf. Int.\n--------------------------------------------------------------------------\nomega 0.4388 0.207 2.121 3.393e-02 [3.329e-02, 0.844]\nalpha[1] 0.0962 4.760e-02 2.022 4.319e-02 [2.944e-03, 0.190]\nbeta[1] 0.8768 4.647e-02 18.866 2.158e-79 [ 0.786, 0.968]\n==========================================================================\n\nCovariance estimator: robust\nARCHModelResult, id: 0x1256660a0}", + "status": "success" + }, + "volatility": { + "realized_vol": " rv_7d rv_30d rv_90d\ndatetime \n2017-08-24 0.508880 NaN NaN\n2017-08-25 0.412318 NaN NaN\n2017-08-26 0.419513 NaN NaN\n2017-08-27 0.411345 NaN NaN\n2017-08-28 0.411973 NaN NaN\n... ... ... ...\n2026-01-28 0.263750 0.322936 0.386842\n2026-01-29 0.467542 0.369624 0.400849\n2026-01-30 0.468716 0.368485 0.400856\n2026-01-31 0.676833 0.435210 0.423360\n2026-02-01 0.664176 0.440095 0.419459\n\n[3084 rows x 3 columns]", + "acf_power_law": "{'d': np.float64(0.6351287691927425), 'd_nonlinear': np.float64(0.3448903462999068), 'r_squared': np.float64(0.42313817191006875), 'slope': np.float64(-0.6351287691927425), 'intercept': np.float64(-0.4744814497920893), 'p_value': np.float64(5.8241517539033605e-25), 'std_err': np.float64(0.053242166415478624), 'lags': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,\n 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,\n 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,\n 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,\n 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,\n 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,\n 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,\n 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,\n 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,\n 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,\n 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,\n 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,\n 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,\n 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,\n 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,\n 196, 197, 198, 199, 200]), 'acf_values': array([ 0.16941215, 0.11681494, 0.11477814, 0.18185448, 0.14259819,\n 0.14312719, 0.13894497, 0.12687252, 0.10913528, 0.10631101,\n 0.12944533, 0.11684757, 0.09762454, 0.15017366, 0.12411898,\n 0.12326963, 0.11562807, 0.0844657 , 0.07607039, 0.09505224,\n 0.16106874, 0.07148222, 0.09370097, 0.113692 , 0.11214878,\n 0.07064554, 0.09680625, 0.10452395, 0.09941853, 0.06644419,\n 0.07644115, 0.10051518, 0.07849206, 0.07073167, 0.1368152 ,\n 0.10616077, 0.07564097, 0.07883957, 0.07680061, 0.07310946,\n 0.11918992, 0.07922182, 0.06456951, 0.08403174, 0.07692813,\n 0.08377337, 0.04391864, 0.10519398, 0.07786352, 0.05243764,\n 0.02742507, 0.04606311, 0.05652268, 0.04697355, 0.04920116,\n 0.12268232, 0.0759553 , 0.09233128, 0.05483661, 0.06063155,\n 0.05068447, 0.10495384, 0.07299428, 0.05869396, 0.06155175,\n 0.06108528, 0.05599143, 0.04059884, 0.04826835, 0.09459542,\n 0.04167287, 0.06421634, 0.03641472, 0.0238428 , 0.02949051,\n 0.028975 , 0.07587434, 0.04076047, 0.02183433, 0.04071859,\n 0.07915313, 0.04777162, 0.06885369, 0.07274957, 0.04513606,\n 0.07586587, 0.0313361 , 0.03066215, 0.03402811, 0.02781086,\n 0.07376816, 0.04940179, 0.03161297, 0.05145948, 0.06577359,\n 0.02750272, 0.03582021, 0.06441121, 0.03604022, 0.03358751,\n 0.01675996, 0.0422471 , 0.06591494, 0.06885818, 0.04818789,\n 0.04963618, 0.03163956, 0.01832079, 0.01964259, 0.01123289,\n 0.04754563, 0.07196065, 0.05327285, 0.01016024, 0.02099561,\n 0.03435864, 0.02275624, 0.0509572 , 0.07064521, 0.01823375,\n 0.03585885, 0.04181538, 0.03457026, 0.03414933, 0.0637637 ,\n 0.07646433, 0.03986097, 0.02894514, 0.03613122, 0.04108859,\n 0.00557398, 0.02362922, 0.05843189, 0.07093583, 0.01379967,\n 0.03433454, 0.04788753, 0.03138599, 0.08687262, 0.06597871,\n 0.04592148, 0.02997983, 0.03153215, 0.03551219, 0.02675903,\n 0.03524658, 0.05154921, 0.03958578, 0.03302279, 0.03481268,\n 0.02006116, 0.00173977, 0.05858255, 0.03622785, 0.01146138,\n 0.02265825, 0.04005955, 0.01007684, 0.01566085, 0.02396771,\n 0.03186424, 0.04805276, 0.01635648, 0.01976088, 0.02343394,\n 0.00273027, 0.02632813, 0.04456983, 0.01092182, 0.05303205,\n 0.01297113, 0.010092 , 0.02187145, 0.05982095, 0.07711737,\n -0.00194965, 0.00163255, 0.01963515, 0.01550529, 0.00465648,\n 0.0280234 , 0.04069632, 0.00792728, 0.00806326, 0.01348062,\n 0.00751679, 0.01850354, 0.00878234, 0.02196925, 0.00988049,\n 0.00236659, -0.00252685, 0.00163724, -0.00829965, 0.02765656,\n 0.04718163, 0.03509459, 0.01161449, -0.01577184, 0.00061623]), 'lags_positive': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,\n 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,\n 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,\n 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,\n 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,\n 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,\n 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,\n 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,\n 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,\n 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,\n 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,\n 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,\n 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,\n 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182, 183,\n 184, 185, 186, 187, 188, 189, 190, 191, 193, 195, 196, 197, 198,\n 200]), 'acf_positive': array([0.16941215, 0.11681494, 0.11477814, 0.18185448, 0.14259819,\n 0.14312719, 0.13894497, 0.12687252, 0.10913528, 0.10631101,\n 0.12944533, 0.11684757, 0.09762454, 0.15017366, 0.12411898,\n 0.12326963, 0.11562807, 0.0844657 , 0.07607039, 0.09505224,\n 0.16106874, 0.07148222, 0.09370097, 0.113692 , 0.11214878,\n 0.07064554, 0.09680625, 0.10452395, 0.09941853, 0.06644419,\n 0.07644115, 0.10051518, 0.07849206, 0.07073167, 0.1368152 ,\n 0.10616077, 0.07564097, 0.07883957, 0.07680061, 0.07310946,\n 0.11918992, 0.07922182, 0.06456951, 0.08403174, 0.07692813,\n 0.08377337, 0.04391864, 0.10519398, 0.07786352, 0.05243764,\n 0.02742507, 0.04606311, 0.05652268, 0.04697355, 0.04920116,\n 0.12268232, 0.0759553 , 0.09233128, 0.05483661, 0.06063155,\n 0.05068447, 0.10495384, 0.07299428, 0.05869396, 0.06155175,\n 0.06108528, 0.05599143, 0.04059884, 0.04826835, 0.09459542,\n 0.04167287, 0.06421634, 0.03641472, 0.0238428 , 0.02949051,\n 0.028975 , 0.07587434, 0.04076047, 0.02183433, 0.04071859,\n 0.07915313, 0.04777162, 0.06885369, 0.07274957, 0.04513606,\n 0.07586587, 0.0313361 , 0.03066215, 0.03402811, 0.02781086,\n 0.07376816, 0.04940179, 0.03161297, 0.05145948, 0.06577359,\n 0.02750272, 0.03582021, 0.06441121, 0.03604022, 0.03358751,\n 0.01675996, 0.0422471 , 0.06591494, 0.06885818, 0.04818789,\n 0.04963618, 0.03163956, 0.01832079, 0.01964259, 0.01123289,\n 0.04754563, 0.07196065, 0.05327285, 0.01016024, 0.02099561,\n 0.03435864, 0.02275624, 0.0509572 , 0.07064521, 0.01823375,\n 0.03585885, 0.04181538, 0.03457026, 0.03414933, 0.0637637 ,\n 0.07646433, 0.03986097, 0.02894514, 0.03613122, 0.04108859,\n 0.00557398, 0.02362922, 0.05843189, 0.07093583, 0.01379967,\n 0.03433454, 0.04788753, 0.03138599, 0.08687262, 0.06597871,\n 0.04592148, 0.02997983, 0.03153215, 0.03551219, 0.02675903,\n 0.03524658, 0.05154921, 0.03958578, 0.03302279, 0.03481268,\n 0.02006116, 0.00173977, 0.05858255, 0.03622785, 0.01146138,\n 0.02265825, 0.04005955, 0.01007684, 0.01566085, 0.02396771,\n 0.03186424, 0.04805276, 0.01635648, 0.01976088, 0.02343394,\n 0.00273027, 0.02632813, 0.04456983, 0.01092182, 0.05303205,\n 0.01297113, 0.010092 , 0.02187145, 0.05982095, 0.07711737,\n 0.00163255, 0.01963515, 0.01550529, 0.00465648, 0.0280234 ,\n 0.04069632, 0.00792728, 0.00806326, 0.01348062, 0.00751679,\n 0.01850354, 0.00878234, 0.02196925, 0.00988049, 0.00236659,\n 0.00163724, 0.02765656, 0.04718163, 0.03509459, 0.01161449,\n 0.00061623]), 'is_long_memory': np.True_}", + "model_comparison": "{'GARCH': {'params': {'mu': np.float64(0.12952422372058514), 'omega': np.float64(0.43881933719318955), 'alpha[1]': np.float64(0.09623144766619043), 'beta[1]': np.float64(0.876807221573444)}, 'aic': 16191.273421029466, 'bic': np.float64(16215.417126509034), 'log_likelihood': -8091.636710514733, 'conditional_volatility': datetime\n2017-08-18 0.045564\n2017-08-19 0.045227\n2017-08-20 0.042910\n2017-08-21 0.040965\n2017-08-22 0.039354\n ... \n2026-01-28 0.024847\n2026-01-29 0.024192\n2026-01-30 0.029081\n2026-01-31 0.028085\n2026-02-01 0.034557\nName: cond_vol, Length: 3090, dtype: float64, 'result_obj': Constant Mean - GARCH Model Results \n==============================================================================\nDep. Variable: close R-squared: 0.000\nMean Model: Constant Mean Adj. R-squared: 0.000\nVol Model: GARCH Log-Likelihood: -8091.64\nDistribution: Normal AIC: 16191.3\nMethod: Maximum Likelihood BIC: 16215.4\n No. Observations: 3090\nDate: Tue, Feb 03 2026 Df Residuals: 3089\nTime: 11:15:48 Df Model: 1\n Mean Model \n==========================================================================\n coef std err t P>|t| 95.0% Conf. Int.\n--------------------------------------------------------------------------\nmu 0.1295 5.806e-02 2.231 2.568e-02 [1.573e-02, 0.243]\n Volatility Model \n==========================================================================\n coef std err t P>|t| 95.0% Conf. Int.\n--------------------------------------------------------------------------\nomega 0.4388 0.207 2.121 3.393e-02 [3.329e-02, 0.844]\nalpha[1] 0.0962 4.760e-02 2.022 4.319e-02 [2.944e-03, 0.190]\nbeta[1] 0.8768 4.647e-02 18.866 2.158e-79 [ 0.786, 0.968]\n==========================================================================\n\nCovariance estimator: robust\nARCHModelResult, id: 0x12606b700}, 'EGARCH': {'params': {'mu': np.float64(0.11417527305176238), 'omega': np.float64(0.11719203779011349), 'alpha[1]': np.float64(0.17325396230660126), 'beta[1]': np.float64(0.9600892426630561)}, 'aic': 16209.480929812882, 'bic': np.float64(16233.62463529245), 'log_likelihood': -8100.740464906441, 'conditional_volatility': datetime\n2017-08-18 0.045606\n2017-08-19 0.046114\n2017-08-20 0.043460\n2017-08-21 0.041720\n2017-08-22 0.040522\n ... \n2026-01-28 0.024748\n2026-01-29 0.023667\n2026-01-30 0.027635\n2026-01-31 0.026737\n2026-02-01 0.031800\nName: cond_vol, Length: 3090, dtype: float64, 'leverage_param': nan, 'result_obj': Constant Mean - EGARCH Model Results \n==============================================================================\nDep. Variable: close R-squared: 0.000\nMean Model: Constant Mean Adj. R-squared: 0.000\nVol Model: EGARCH Log-Likelihood: -8100.74\nDistribution: Normal AIC: 16209.5\nMethod: Maximum Likelihood BIC: 16233.6\n No. Observations: 3090\nDate: Tue, Feb 03 2026 Df Residuals: 3089\nTime: 11:15:48 Df Model: 1\n Mean Model \n==========================================================================\n coef std err t P>|t| 95.0% Conf. Int.\n--------------------------------------------------------------------------\nmu 0.1142 5.823e-02 1.961 4.991e-02 [4.720e-05, 0.228]\n Volatility Model \n==========================================================================\n coef std err t P>|t| 95.0% Conf. Int.\n--------------------------------------------------------------------------\nomega 0.1172 4.701e-02 2.493 1.266e-02 [2.506e-02, 0.209]\nalpha[1] 0.1733 5.445e-02 3.182 1.463e-03 [6.653e-02, 0.280]\nbeta[1] 0.9601 1.594e-02 60.213 0.000 [ 0.929, 0.991]\n==========================================================================\n\nCovariance estimator: robust\nARCHModelResult, id: 0x124f5a760}, 'GJR-GARCH': {'params': {'mu': np.float64(0.08097224546042321), 'omega': np.float64(0.48386363868276294), 'alpha[1]': np.float64(0.06779768885138529), 'gamma[1]': np.float64(0.06548062265277206), 'beta[1]': np.float64(0.8693004769146425)}, 'aic': 16170.677755626308, 'bic': np.float64(16200.857387475768), 'log_likelihood': -8080.338877813154, 'conditional_volatility': datetime\n2017-08-18 0.045540\n2017-08-19 0.045790\n2017-08-20 0.043293\n2017-08-21 0.041271\n2017-08-22 0.039661\n ... \n2026-01-28 0.025648\n2026-01-29 0.024905\n2026-01-30 0.031310\n2026-01-31 0.030075\n2026-02-01 0.038224\nName: cond_vol, Length: 3090, dtype: float64, 'leverage_param': np.float64(0.06548062265277206), 'result_obj': Constant Mean - GJR-GARCH Model Results \n==============================================================================\nDep. Variable: close R-squared: 0.000\nMean Model: Constant Mean Adj. R-squared: 0.000\nVol Model: GJR-GARCH Log-Likelihood: -8080.34\nDistribution: Normal AIC: 16170.7\nMethod: Maximum Likelihood BIC: 16200.9\n No. Observations: 3090\nDate: Tue, Feb 03 2026 Df Residuals: 3089\nTime: 11:15:48 Df Model: 1\n Mean Model \n===========================================================================\n coef std err t P>|t| 95.0% Conf. Int.\n---------------------------------------------------------------------------\nmu 0.0810 5.352e-02 1.513 0.130 [-2.392e-02, 0.186]\n Volatility Model \n===========================================================================\n coef std err t P>|t| 95.0% Conf. Int.\n---------------------------------------------------------------------------\nomega 0.4839 0.237 2.044 4.094e-02 [1.993e-02, 0.948]\nalpha[1] 0.0678 2.275e-02 2.979 2.887e-03 [2.320e-02, 0.112]\ngamma[1] 0.0655 6.205e-02 1.055 0.291 [-5.613e-02, 0.187]\nbeta[1] 0.8693 4.827e-02 18.009 1.663e-72 [ 0.775, 0.964]\n===========================================================================\n\nCovariance estimator: robust\nARCHModelResult, id: 0x124ec2d60}}", + "leverage_effect": "{'5d': {'pearson_correlation': np.float64(-0.061984247861208444), 'pearson_pvalue': np.float64(0.0005717052330372451), 'spearman_correlation': np.float64(-0.013703868249034022), 'spearman_pvalue': np.float64(0.44672985128105513), 'n_samples': 3085, 'return_series': datetime\n2017-08-18 -0.042113\n2017-08-19 0.007665\n2017-08-20 -0.013053\n2017-08-21 -0.017351\n2017-08-22 0.005958\n ... \n2026-01-23 0.000453\n2026-01-24 -0.004193\n2026-01-25 -0.029053\n2026-01-26 0.019161\n2026-01-27 0.010168\nName: return, Length: 3085, dtype: float64, 'future_vol_series': datetime\n2017-08-18 0.012436\n2017-08-19 0.020490\n2017-08-20 0.019523\n2017-08-21 0.018687\n2017-08-22 0.018765\n ... \n2026-01-23 0.012627\n2026-01-24 0.022483\n2026-01-25 0.017596\n2026-01-26 0.027313\n2026-01-27 0.029834\nName: future_vol, Length: 3085, dtype: float64}, '10d': {'pearson_correlation': np.float64(-0.033668665650756026), 'pearson_pvalue': np.float64(0.06171938986587776), 'spearman_correlation': np.float64(0.0022075568332161587), 'spearman_pvalue': np.float64(0.9025308817972548), 'n_samples': 3080, 'return_series': datetime\n2017-08-18 -0.042113\n2017-08-19 0.007665\n2017-08-20 -0.013053\n2017-08-21 -0.017351\n2017-08-22 0.005958\n ... \n2026-01-18 -0.015620\n2026-01-19 -0.011188\n2026-01-20 -0.046439\n2026-01-21 0.011548\n2026-01-22 0.001172\nName: return, Length: 3080, dtype: float64, 'future_vol_series': datetime\n2017-08-18 0.015548\n2017-08-19 0.019258\n2017-08-20 0.018660\n2017-08-21 0.020583\n2017-08-22 0.022289\n ... \n2026-01-18 0.013394\n2026-01-19 0.017622\n2026-01-20 0.013440\n2026-01-21 0.019060\n2026-01-22 0.021220\nName: future_vol, Length: 3080, dtype: float64}, '20d': {'pearson_correlation': np.float64(-0.017638367572489176), 'pearson_pvalue': np.float64(0.32858040373635033), 'spearman_correlation': np.float64(0.006272837436601455), 'spearman_pvalue': np.float64(0.7282723382926714), 'n_samples': 3070, 'return_series': datetime\n2017-08-18 -0.042113\n2017-08-19 0.007665\n2017-08-20 -0.013053\n2017-08-21 -0.017351\n2017-08-22 0.005958\n ... \n2026-01-08 -0.002896\n2026-01-09 -0.005048\n2026-01-10 -0.001508\n2026-01-11 0.005608\n2026-01-12 0.003100\nName: return, Length: 3070, dtype: float64, 'future_vol_series': datetime\n2017-08-18 0.029149\n2017-08-19 0.033324\n2017-08-20 0.032953\n2017-08-21 0.033616\n2017-08-22 0.034255\n ... \n2026-01-08 0.012185\n2026-01-09 0.014607\n2026-01-10 0.014762\n2026-01-11 0.017869\n2026-01-12 0.018853\nName: future_vol, Length: 3070, dtype: float64}}", + "status": "success" + }, + "hurst": { + "R/S Hurst": 0.599066670965807, + "DFA Hurst": 0.5868487366138886, + "交叉验证": { + "R/S Hurst": 0.599066670965807, + "DFA Hurst": 0.5868487366138886, + "两种方法差异": 0.012217934351918425, + "平均值": 0.5929577037898478 + }, + "综合Hurst": 0.5929577037898478, + "综合解读": "趋势性 (H=0.5930 > 0.55):序列具有长程正相关,价格趋势倾向于持续", + "滚动Hurst": { + "窗口数": 87, + "趋势占比": 0.9885057471264368, + "随机游走占比": 0.011494252873563218, + "均值回归占比": 0.0, + "Hurst范围": [ + 0.548657473865875, + 0.6540287499669682 + ], + "Hurst均值": 0.5913167465022056 + }, + "多时间框架": { + "1h": { + "R/S Hurst": 0.5551829664830917, + "DFA Hurst": 0.5559270762382792, + "平均Hurst": 0.5555550213606855, + "数据量": 74052, + "解读": "趋势性 (H=0.5556 > 0.55):序列具有长程正相关,价格趋势倾向于持续" + }, + "4h": { + "R/S Hurst": 0.5749044947852355, + "DFA Hurst": 0.577134099743992, + "平均Hurst": 0.5760192972646138, + "数据量": 18527, + "解读": "趋势性 (H=0.5760 > 0.55):序列具有长程正相关,价格趋势倾向于持续" + }, + "1d": { + "R/S Hurst": 0.599066670965807, + "DFA Hurst": 0.5868487366138886, + "平均Hurst": 0.5929577037898478, + "数据量": 3090, + "解读": "趋势性 (H=0.5930 > 0.55):序列具有长程正相关,价格趋势倾向于持续" + }, + "1w": { + "R/S Hurst": 0.6863567334278854, + "DFA Hurst": 0.6551931131151767, + "平均Hurst": 0.670774923271531, + "数据量": 434, + "解读": "趋势性 (H=0.6708 > 0.55):序列具有长程正相关,价格趋势倾向于持续" + } + }, + "status": "success" + }, + "fractal": { + "盒计数分形维数": 1.33981806810231, + "维数解读": "序列较为光滑,具有一定趋势持续性", + "Hurst(从D推算)": 0.66018193189769, + "蒙特卡洛检验": "{'BTC分形维数': np.float64(1.33981806810231), '随机游走均值': np.float64(1.380548625079417), '随机游走标准差': np.float64(0.029469822925662244), '随机游走范围': (np.float64(1.2773941560871607), np.float64(1.4351289056018914)), 'Z统计量': np.float64(-1.3821106791123259), 'p值': np.float64(0.16693771997826756), '显著性(α=0.05)': np.False_}", + "多尺度自相似性": { + "缩放指数(H估计)": 0.5274203951268943 + }, + "status": "success" + }, + "power_law": { + "r_squared": 0.5678120109582484, + "power_exponent": 0.7699636561390698, + "intercept": 4.629820314237845, + "corridor_prices": { + "0.05": 16879.14611194412, + "0.5": 51706.664285887106, + "0.95": 119339.81281975961 + }, + "model_comparison": { + "power_law_aic": 68300.50392355697, + "power_law_bic": 68312.57642344123, + "exponential_aic": 67807.4540823288, + "exponential_bic": 67819.52658221306, + "preferred": "exponential" + }, + "current_price": 76968.21, + "current_percentile": 67.87447428016823, + "status": "success" + }, + "volume_price": { + "spearman": { + "correlation": 0.3214920649731082, + "p_value": 3.1129979914822277e-75, + "n_samples": 3090 + }, + "lead_lag": { + "significant_lags": [] + }, + "granger": { + "volume_to_returns_sig_lags": [], + "returns_to_volume_sig_lags": [] + }, + "obv_divergences": { + "total": 82, + "bearish": 49, + "bullish": 33 + }, + "status": "success" + }, + "calendar": { + "status": "success", + "findings": [] + }, + "halving": { + "status": "success", + "findings": [] + }, "indicators": { "train_results": " n_buy n_sell ... ic_rejected any_fdr_pass\nindicator ... \nSMA_5_20 47.0 48.0 ... False False\nEMA_5_20 53.0 54.0 ... False False\nSMA_10_50 21.0 22.0 ... False False\nEMA_10_50 19.0 20.0 ... False False\nSMA_20_100 7.0 8.0 ... False False\nEMA_20_100 9.0 10.0 ... False False\nSMA_50_200 4.0 5.0 ... False False\nEMA_50_200 6.0 7.0 ... False False\nRSI_7_30_70 66.0 78.0 ... False False\nRSI_7_25_75 48.0 62.0 ... False False\nRSI_7_20_80 21.0 41.0 ... False False\nRSI_14_30_70 24.0 47.0 ... False False\nRSI_14_25_75 15.0 27.0 ... False False\nRSI_14_20_80 4.0 17.0 ... False False\nRSI_21_30_70 14.0 29.0 ... False False\nRSI_21_25_75 4.0 16.0 ... False False\nRSI_21_20_80 2.0 11.0 ... False False\nMACD_12_26_9 65.0 65.0 ... False False\nMACD_8_17_9 92.0 92.0 ... False False\nMACD_5_35_5 123.0 123.0 ... False False\nBB_20_2 39.0 59.0 ... False False\n\n[21 rows x 23 columns]", "val_results": " n_buy n_sell ... ic_rejected any_fdr_pass\nindicator ... \nSMA_5_20 21.0 21.0 ... False False\nEMA_5_20 17.0 17.0 ... False False\nSMA_10_50 7.0 7.0 ... False False\nEMA_10_50 8.0 8.0 ... False False\nSMA_20_100 4.0 4.0 ... False False\nEMA_20_100 3.0 3.0 ... False False\nSMA_50_200 2.0 1.0 ... False False\nEMA_50_200 2.0 1.0 ... False False\nRSI_7_30_70 16.0 27.0 ... False False\nRSI_7_25_75 9.0 16.0 ... False False\nRSI_7_20_80 4.0 17.0 ... False False\nRSI_14_30_70 4.0 17.0 ... False False\nRSI_14_25_75 3.0 6.0 ... False False\nRSI_14_20_80 1.0 7.0 ... False False\nRSI_21_30_70 1.0 7.0 ... False False\nRSI_21_25_75 0.0 9.0 ... False False\nRSI_21_20_80 0.0 7.0 ... False False\nMACD_12_26_9 22.0 23.0 ... False False\nMACD_8_17_9 28.0 29.0 ... False False\nMACD_5_35_5 42.0 43.0 ... False False\nBB_20_2 12.0 26.0 ... False False\n\n[21 rows x 23 columns]", @@ -40,5 +876,33 @@ ], "all_patterns": "{'Doji': datetime\n2017-08-17 1\n2017-08-18 0\n2017-08-19 1\n2017-08-20 0\n2017-08-21 0\n ..\n2026-01-28 1\n2026-01-29 0\n2026-01-30 0\n2026-01-31 0\n2026-02-01 0\nLength: 3091, dtype: int64, 'Hammer': datetime\n2017-08-17 0\n2017-08-18 0\n2017-08-19 0\n2017-08-20 0\n2017-08-21 0\n ..\n2026-01-28 0\n2026-01-29 0\n2026-01-30 1\n2026-01-31 0\n2026-02-01 0\nLength: 3091, dtype: int64, 'Inverted_Hammer': datetime\n2017-08-17 0\n2017-08-18 0\n2017-08-19 0\n2017-08-20 0\n2017-08-21 0\n ..\n2026-01-28 0\n2026-01-29 0\n2026-01-30 0\n2026-01-31 0\n2026-02-01 0\nLength: 3091, dtype: int64, 'Shooting_Star': datetime\n2017-08-17 0\n2017-08-18 0\n2017-08-19 0\n2017-08-20 0\n2017-08-21 0\n ..\n2026-01-28 0\n2026-01-29 0\n2026-01-30 0\n2026-01-31 0\n2026-02-01 0\nLength: 3091, dtype: int64, 'Pin_Bar_Bull': datetime\n2017-08-17 0\n2017-08-18 0\n2017-08-19 1\n2017-08-20 0\n2017-08-21 0\n ..\n2026-01-28 0\n2026-01-29 0\n2026-01-30 1\n2026-01-31 0\n2026-02-01 0\nLength: 3091, dtype: int64, 'Pin_Bar_Bear': datetime\n2017-08-17 1\n2017-08-18 0\n2017-08-19 0\n2017-08-20 0\n2017-08-21 0\n ..\n2026-01-28 1\n2026-01-29 0\n2026-01-30 0\n2026-01-31 0\n2026-02-01 0\nLength: 3091, dtype: int64, 'Bullish_Engulfing': datetime\n2017-08-17 0\n2017-08-18 0\n2017-08-19 0\n2017-08-20 0\n2017-08-21 0\n ..\n2026-01-28 0\n2026-01-29 0\n2026-01-30 0\n2026-01-31 0\n2026-02-01 0\nLength: 3091, dtype: int64, 'Bearish_Engulfing': datetime\n2017-08-17 0\n2017-08-18 1\n2017-08-19 0\n2017-08-20 0\n2017-08-21 0\n ..\n2026-01-28 0\n2026-01-29 1\n2026-01-30 0\n2026-01-31 0\n2026-02-01 0\nLength: 3091, dtype: int64, 'Morning_Star': datetime\n2017-08-17 0\n2017-08-18 0\n2017-08-19 0\n2017-08-20 0\n2017-08-21 0\n ..\n2026-01-28 0\n2026-01-29 0\n2026-01-30 0\n2026-01-31 0\n2026-02-01 0\nLength: 3091, dtype: int64, 'Evening_Star': datetime\n2017-08-17 0\n2017-08-18 0\n2017-08-19 0\n2017-08-20 0\n2017-08-21 0\n ..\n2026-01-28 0\n2026-01-29 1\n2026-01-30 0\n2026-01-31 0\n2026-02-01 0\nLength: 3091, dtype: int64, 'Three_White_Soldiers': datetime\n2017-08-17 0\n2017-08-18 0\n2017-08-19 0\n2017-08-20 0\n2017-08-21 0\n ..\n2026-01-28 0\n2026-01-29 0\n2026-01-30 0\n2026-01-31 0\n2026-02-01 0\nLength: 3091, dtype: int64, 'Three_Black_Crows': datetime\n2017-08-17 0\n2017-08-18 0\n2017-08-19 0\n2017-08-20 0\n2017-08-21 0\n ..\n2026-01-28 0\n2026-01-29 0\n2026-01-30 0\n2026-01-31 0\n2026-02-01 0\nLength: 3091, dtype: int64}", "status": "success" + }, + "clustering": { + "kmeans": "{'best_k': 3, 'labels': array([1, 1, 2, ..., 0, 1, 0], dtype=int32), 'cluster_desc': log_return abs_return vol_7d ... state_cn count pct\ncluster_K-Means ... \n0 -0.000096 0.012406 0.465074 ... 横盘整理 2253 73.6\n1 -0.056358 0.056570 0.951770 ... 急剧下跌 361 11.8\n2 0.052789 0.052932 0.876194 ... 强势上涨 447 14.6\n\n[3 rows x 14 columns], 'all_results': {3: {'silhouette': np.float64(0.33788983182490917), 'inertia': 21341.973506600978, 'labels': array([1, 1, 2, ..., 0, 1, 0], dtype=int32), 'model': KMeans(max_iter=500, n_clusters=3, n_init=20, random_state=42)}, 4: {'silhouette': np.float64(0.2383690756014495), 'inertia': 19697.42665658707, 'labels': array([3, 3, 0, ..., 1, 2, 3], dtype=int32), 'model': KMeans(max_iter=500, n_clusters=4, n_init=20, random_state=42)}, 5: {'silhouette': np.float64(0.1748258615401955), 'inertia': 18264.213417509138, 'labels': array([4, 4, 0, ..., 2, 3, 4], dtype=int32), 'model': KMeans(max_iter=500, n_clusters=5, n_init=20, random_state=42)}, 6: {'silhouette': np.float64(0.17344301823232902), 'inertia': 17141.26396179242, 'labels': array([2, 2, 0, ..., 3, 3, 3], dtype=int32), 'model': KMeans(max_iter=500, n_clusters=6, n_init=20, random_state=42)}, 7: {'silhouette': np.float64(0.17323332216663148), 'inertia': 16243.10046274255, 'labels': array([3, 4, 1, ..., 5, 5, 5], dtype=int32), 'model': KMeans(max_iter=500, n_clusters=7, n_init=20, random_state=42)}}}", + "gmm": "{'best_k': 7, 'labels': array([3, 1, 3, ..., 6, 5, 6]), 'cluster_desc': log_return abs_return vol_7d ... state_cn count pct\ncluster_GMM ... \n0 0.010128 0.010128 0.357685 ... 温和上涨 698 22.8\n1 -0.072434 0.072434 1.041344 ... 急剧下跌 122 4.0\n2 -0.012261 0.012261 0.381069 ... 温和下跌 783 25.6\n3 0.059049 0.059049 1.051605 ... 强势上涨 241 7.9\n4 0.025606 0.025606 0.656672 ... 强势上涨 634 20.7\n5 -0.043943 0.043943 0.803047 ... 急剧下跌 290 9.5\n6 -0.011326 0.011326 0.700769 ... 温和下跌 293 9.6\n\n[7 rows x 14 columns], 'all_results': {3: {'bic': np.float64(7219.829483951697), 'aic': np.float64(6032.609586979451), 'silhouette': np.float64(0.06549802389899598), 'labels': array([0, 2, 0, ..., 2, 2, 1]), 'model': GaussianMixture(max_iter=500, n_components=3, n_init=5, random_state=42)}, 4: {'bic': np.float64(-101.52417196679198), 'aic': np.float64(-1686.4928669094352), 'silhouette': np.float64(0.05590661985706378), 'labels': array([3, 2, 3, ..., 2, 2, 0]), 'model': GaussianMixture(max_iter=500, n_components=4, n_init=5, random_state=42)}, 5: {'bic': np.float64(-2057.235977022373), 'aic': np.float64(-4039.9534699354135), 'silhouette': np.float64(0.03830870117896256), 'labels': array([2, 4, 2, ..., 0, 0, 0]), 'model': GaussianMixture(max_iter=500, n_components=5, n_init=5, random_state=42)}, 6: {'bic': np.float64(-1810.3804844055708), 'aic': np.float64(-4190.846775289008), 'silhouette': np.float64(0.04026910587877369), 'labels': array([2, 5, 0, ..., 3, 3, 3]), 'model': GaussianMixture(max_iter=500, n_components=6, n_init=5, random_state=42)}, 7: {'bic': np.float64(-3434.449804148429), 'aic': np.float64(-6212.664893002264), 'silhouette': np.float64(0.01891584304771941), 'labels': array([3, 1, 3, ..., 6, 5, 6]), 'model': GaussianMixture(max_iter=500, n_components=7, n_init=5, random_state=42)}}}", + "hdbscan": "{'labels': array([-1, -1, -1, ..., -1, -1, -1]), 'info': {'n_clusters': 0, 'n_noise': np.int64(3061), 'noise_pct': np.float64(100.0), 'labels': array([-1, -1, -1, ..., -1, -1, -1]), 'model': HDBSCAN(min_cluster_size=30, min_samples=10)}}", + "markov": "{'transition_matrix': array([[0.81971581, 0.07726465, 0.10301954],\n [0.45152355, 0.2299169 , 0.31855956],\n [0.5458613 , 0.23042506, 0.22371365]]), 'stationary_distribution': array([0.73645018, 0.11757031, 0.14597951]), 'holding_time': array([5.54679803, 1.29856115, 1.28818444])}", + "features": "{'df_clean': open high ... log_return_lag1 log_return_lag2\ndatetime ... \n2017-09-16 3674.01 3950.00 ... 0.148619 -0.212657\n2017-09-17 3685.23 3748.21 ... 0.004032 0.148619\n2017-09-18 3690.00 4123.20 ... -0.004035 0.004032\n2017-09-19 4060.00 4089.97 ... 0.086679 -0.004035\n2017-09-20 3910.04 4046.08 ... -0.031461 0.086679\n... ... ... ... ... ...\n2026-01-28 89249.99 90600.00 ... 0.010168 0.019161\n2026-01-29 89300.00 89348.00 ... 0.000560 0.010168\n2026-01-30 84650.16 84735.75 ... -0.053474 0.000560\n2026-01-31 84260.50 84270.02 ... -0.004614 -0.053474\n2026-02-01 78741.10 79424.00 ... -0.067748 -0.004614\n\n[3061 rows x 24 columns], 'X_scaled': array([[ 0.08513551, -0.72523644, 4.04658793, ..., 0.26911597,\n 4.12039156, -5.93472476],\n [-0.14073076, -0.72513592, 4.04721932, ..., 0.06727386,\n 0.08334177, 4.10039685],\n [ 2.39898724, 2.3484655 , 4.39080301, ..., 2.5979057 ,\n -0.14191333, 0.08422571],\n ...,\n [-0.15693614, -0.70360882, -0.3029424 , ..., -0.17615044,\n -1.52232198, -0.012228 ],\n [-1.92450248, 1.64441202, 0.13494686, ..., -1.89826004,\n -0.15807487, -1.51313393],\n [-0.66532683, -0.02826674, 0.12068419, ..., -0.68265688,\n -1.92085845, -0.15594238]]), 'scaler': StandardScaler()}", + "status": "success" + }, + "time_series": { + "metrics": "{'Random Walk': {'name': 'Random Walk', 'rmse': np.float64(0.02531781370478331), 'rmse_ratio_vs_rw': np.float64(1.0), 'direction_accuracy': np.float64(0.0), 'dm_stat_vs_rw': nan, 'dm_pval_vs_rw': nan, 'predictions': array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 'errors': array([-5.76555882e-03, -1.32482993e-02, 2.95881469e-02, 3.54700668e-02,\n -8.86807695e-03, -9.85029250e-03, -2.18074843e-02, -5.75794217e-03,\n 1.08397524e-03, -1.59268553e-02, -3.76363267e-03, 4.99954856e-03,\n 1.13988381e-02, -1.02822908e-02, -5.62356239e-03, 1.01006875e-02,\n 1.47830061e-02, -1.14422775e-02, -1.05833258e-02, -4.29965744e-03,\n 6.40996125e-03, 2.08399000e-03, 1.88814048e-02, -1.23744128e-02,\n 3.80839730e-02, 3.38584068e-02, -2.32062173e-02, 1.45149105e-02,\n 1.05229017e-02, -8.79361510e-03, -6.65109064e-03, -3.47534413e-04,\n -1.63299430e-02, 2.77405884e-03, 4.55002685e-02, 7.10756813e-03,\n -1.86613858e-02, -1.51557084e-02, -1.04539949e-01, -1.52567779e-01,\n 1.00211568e-01, -3.06235437e-02, -1.52430215e-02, -2.91029542e-02,\n 1.75795765e-02, 1.67730512e-02, -1.41710599e-02, 1.78682189e-03,\n 4.72553995e-04, 1.37719892e-05, -2.54979489e-02, -3.11264271e-02,\n 2.78477629e-02, 2.29172032e-02, -2.50586862e-04, -4.63814070e-03,\n -3.85498546e-03, -1.81163932e-03, -1.32268364e-02, 1.40634323e-02,\n 4.29219220e-02, -1.09119120e-02, 6.77253117e-03, -1.22163134e-02,\n 1.29742427e-02, -8.17977063e-03, 7.20067031e-03, -1.48751770e-02,\n 2.27521019e-02, -5.56232014e-03, -6.24707169e-05, -2.48096293e-03,\n 7.27692009e-03, 3.22953657e-02, 1.59931002e-03, -2.54175504e-02,\n -4.26220920e-02, 8.64452424e-03, -2.28615995e-03, -1.80448690e-02,\n 2.74016047e-02, -4.20460385e-03, -1.92592901e-04, -2.55536386e-03,\n 3.42827356e-03, -2.38206762e-04, 5.17192981e-03, -1.26708163e-02,\n -9.56593440e-03, 5.19337964e-03, -1.56373421e-03, -3.92641443e-03,\n 4.48444092e-03, 3.37162474e-03, 1.38538835e-04, 1.04506352e-02,\n -1.09909664e-03, 7.03325626e-03, -4.17770352e-04, 1.08162151e-02,\n 2.94000490e-03, 1.51596309e-02, 2.84102952e-02, 4.91190305e-02,\n 5.58930485e-02, 5.01468277e-02, -3.98887166e-03, 1.49394737e-02,\n -2.40262154e-03, -2.18767424e-02, 1.88809860e-02, 7.29936991e-02,\n 5.11939752e-03, -3.32678352e-03, 9.14299248e-03, -1.24508352e-02,\n 1.87361192e-02, -2.22658408e-03, 2.79968354e-03, -2.23703451e-03,\n 3.07819252e-02, -3.93514588e-02, 1.30130964e-02, 2.59322536e-02,\n -1.03224865e-02, -2.43133022e-03, -4.49371291e-03, -1.70316321e-02,\n -7.45767311e-03, 2.07794016e-02, -1.20105003e-02, -5.21417004e-02,\n -7.88368568e-03, 1.09162885e-02, -3.62048863e-03, -4.39419065e-04,\n 1.93698620e-02, 9.13804912e-02, -3.37113933e-02, 4.37707860e-02,\n 2.51941521e-03, -1.47308461e-02, 2.32302854e-02, -1.58252644e-02,\n -1.11013167e-02, -1.00581845e-02, -3.20410285e-02, -1.21789238e-03,\n 1.70316106e-02, -2.66797531e-03, -1.50332014e-02, 2.08429342e-02,\n -6.94991510e-03, -4.85031008e-02, -3.47643933e-04, 3.73720671e-03,\n -9.02760617e-04, -9.50689505e-03, -2.24374724e-02, -6.38816973e-02,\n -1.04426921e-02, 1.50245079e-02, 7.26480423e-02, 9.18599391e-02,\n 2.28335296e-02, -1.57184971e-02, 2.89409710e-02, 9.15382367e-02,\n -1.79605739e-02, 3.88304254e-02, -9.18880774e-03, 1.39179152e-02,\n -3.08751025e-02, 3.76104839e-02, -3.01706045e-02, 3.08827329e-04,\n 1.82249637e-02, -3.06102933e-02, 5.00718327e-03, 3.91179691e-02,\n -1.13547262e-02, 1.54649894e-02, -4.43795644e-04, -9.92015143e-03,\n -1.32879417e-02, 1.30607389e-02, 1.61177290e-04, -4.84629843e-03,\n -4.55809363e-03, 1.14782595e-03, 1.36996576e-02, 4.53340244e-02,\n 1.88207788e-02, -1.03964274e-02, 1.61223075e-02, 3.06012145e-03,\n -5.65617990e-03, 3.15512907e-04, -2.92774296e-02, 3.17610898e-02,\n -5.35101387e-02, -1.94060341e-02, -3.53440508e-02, 2.01173494e-02,\n -8.16681719e-03, -2.89175475e-03, 2.83063392e-02, 4.03766112e-03,\n 3.65394057e-02, -5.48003250e-03, -2.77577958e-03, 9.44176263e-05,\n -4.06659912e-02, 2.12069962e-02, 1.23510956e-02, -6.49798223e-03,\n 2.28809047e-02, -2.25328154e-02, -1.45991563e-02, -2.71433799e-02,\n -1.46553930e-03, -1.06904203e-03, -2.30965140e-02, -6.45829173e-03,\n -7.36602355e-04, 5.30201697e-03, 9.04300116e-03, -4.73467736e-03,\n 1.36583224e-02, -2.15521347e-02, 2.19658593e-03, 8.23120354e-03,\n -1.31719125e-02, 3.78715326e-03, 1.36990369e-02, -3.32662963e-02,\n 5.48381384e-03, 8.73007673e-03, 5.53957629e-03, 4.40984084e-02,\n -1.17776184e-02, -1.51540328e-03, -1.76328111e-02, -1.45267220e-02,\n 1.57108639e-02, -6.38426850e-03, 1.69753603e-03, -5.25071585e-02,\n 5.67345780e-02, -3.32586056e-02, 6.02863973e-03, -7.85255065e-04,\n -2.43365193e-02, 3.25846449e-03, -7.85634203e-04, 1.12115420e-03,\n -3.15578492e-02, 1.85267257e-02, 2.87451383e-02, 6.50715597e-03,\n -6.69810227e-03, 1.89678131e-02, 5.30887265e-02, 5.78495973e-02,\n -3.63968891e-03, 2.65339862e-02, -5.26236787e-03, -2.12395241e-03,\n -6.41095285e-03, 1.39256517e-02, -2.02419785e-02, 1.22232571e-02,\n 8.10580466e-04, 3.73088927e-03, 1.01727165e-03, 1.74568722e-02,\n -1.25865016e-02, -8.54238464e-03, -2.01787502e-02, 1.49162470e-02,\n -1.98154984e-03, -4.10023911e-03, 8.28304413e-03, 6.89884239e-03,\n -7.93747334e-03, 3.47489761e-02, -3.69894697e-02, -7.42225519e-04,\n -1.90114283e-03, -3.11380128e-03, -9.29617828e-03, 1.67580400e-03,\n -3.65806621e-03, 3.40761031e-03, -3.60897287e-03, 9.67812791e-03,\n -3.06215681e-02, 1.79469724e-03, 4.20103631e-03, -4.41078217e-03,\n 3.12145136e-03, 1.32135542e-03, -2.44943371e-03, -1.66936331e-03,\n 1.60761571e-02, -1.76592241e-02, 2.61392456e-04, -2.73206267e-03,\n -1.43883136e-03, 5.60173534e-04, 4.20724785e-03, 1.89678784e-02,\n -6.34955289e-03, -4.27659299e-03, -1.00948044e-03, 1.40681866e-04,\n -4.30177319e-03, 4.32759670e-03, -7.87745288e-03, -1.62090850e-02,\n -7.61687204e-02, -2.16195967e-02, 1.76439019e-03, 3.44157922e-03,\n -2.41107629e-03, -2.71813243e-03, 1.43545687e-02, -9.60496634e-03,\n -4.59571491e-03, -1.63756355e-03, 3.23873624e-03, 6.98176287e-04,\n 5.93208266e-02, -1.51357951e-02, -5.10700881e-02, -5.24603862e-03,\n 2.49484595e-03, 3.92356165e-03, -5.60610597e-03, -1.31426735e-03,\n -1.24728325e-03, 1.90354868e-02, -1.32081551e-02, -3.43163021e-04,\n -2.31914546e-03, -2.66303977e-02, 2.65719631e-02, 1.46712042e-02,\n 1.14033481e-02, 2.90911459e-03, -1.51731596e-03, -1.21159210e-03,\n 8.81971984e-03, 1.65920805e-02, -3.13829620e-03, -2.07453166e-02,\n 4.53825178e-04, -1.57272637e-04, -1.24027749e-02, 2.14753935e-03,\n -3.16564405e-03, 5.75421222e-03, 2.42883942e-02, -4.24378538e-03,\n 2.06424782e-03, 3.74898808e-02, -1.79527694e-02, -2.47810754e-03,\n 1.27566193e-02, -1.33427215e-02, 1.88182667e-02, 9.15406228e-04,\n -1.41819827e-03, -1.17798757e-02, -7.27537320e-03, -1.89665293e-02,\n -4.32142654e-03, 3.81823993e-03, -3.54466807e-04, 1.11717075e-02,\n 4.84015661e-02, -3.68633461e-03, -2.67685189e-03, 1.38064402e-02,\n 3.27293688e-02, 8.08210803e-03, 2.75983085e-03, 9.76802079e-02,\n 2.54590666e-02, 1.67595336e-02, -1.00336308e-02, -7.63160547e-03,\n 5.56045581e-03, 1.29694331e-02, -1.48288550e-03, 4.77585206e-03,\n 2.23145603e-02, -1.36391940e-02, -6.45466670e-03, 9.89677584e-03,\n -1.43248693e-03, 9.76619868e-04, 1.00229087e-02, 6.35281784e-03,\n 2.97666760e-02, 1.62305705e-02, -4.61175724e-03, -1.77561263e-03,\n -1.63535275e-02, -2.53224984e-02, 6.28739714e-02, -4.57970017e-02,\n 1.23778966e-02, -1.25222031e-03, 2.14205904e-02, 2.37726663e-03,\n -4.66574572e-02, 4.55769988e-02, -3.05371053e-03, 1.11800130e-02,\n 1.77761953e-03, -8.85951339e-03, -5.48213031e-03, 1.53522319e-02,\n 9.45377125e-04, -3.45812519e-03, 2.50923821e-02, 1.96551008e-02,\n 1.31427943e-02, 4.92719775e-02, 4.83969196e-02, -7.07298282e-03,\n -1.12495087e-02, 2.05361196e-02, -1.04089723e-02, 1.73502448e-03,\n -5.96607574e-02, 5.77650330e-03, 3.26396169e-02, 3.56800236e-03,\n -2.54704776e-02, 8.02038726e-03, -2.15991913e-02, 3.05417667e-02,\n -8.99082855e-03, 3.24175526e-02, 4.40691657e-03, 2.44196807e-03,\n -6.08822109e-03, -1.63951071e-02, 1.35071016e-02, -2.47953519e-02,\n 2.14097953e-02, -2.01207798e-02, -1.17407902e-02, 1.74165612e-03,\n 3.39477815e-03, 4.38631813e-02, 1.72200032e-02, -4.78876952e-02,\n 3.00235215e-02, -1.35679663e-04, -4.01278755e-03, -8.94225073e-04,\n 6.65302071e-02, -1.80755104e-02, 1.17286080e-02, -6.77106223e-03,\n -7.98528755e-02, 1.52421964e-03, -2.63821287e-02, 1.84886109e-02,\n 1.46379018e-02, -8.42358473e-03, -3.44513975e-02, 7.99001389e-03,\n 8.88008430e-04, -2.77894136e-03, -4.96060027e-02, 8.29495547e-03,\n 4.68303414e-03, -3.09297517e-03, 4.55523909e-02, 7.07902281e-03,\n -2.12877564e-03, 2.98061199e-02, -8.38557946e-03, -8.44474980e-03,\n 1.17424356e-02, 2.71340017e-03, -4.38250583e-03, -1.00056949e-02,\n 2.95035199e-03, 9.09598831e-03, 2.86050547e-02, 2.09527597e-02,\n 3.99120636e-02, 1.30333811e-02, 1.14294597e-02, 3.29356814e-02,\n -4.37035149e-03, 4.13002181e-02, 1.63645777e-03, 4.69424618e-03,\n -9.27991780e-03, 9.54003229e-03, -6.98552773e-03, 9.30648803e-03,\n -7.86551053e-03, -1.08781742e-02, -1.06686554e-02, 1.61092509e-02,\n 3.11006168e-03, 5.17532124e-02, 4.59372758e-02, 9.03734251e-02,\n -2.10607909e-02, 2.03525710e-02, -6.44214361e-03, 1.80129369e-02,\n 7.81724353e-02, -6.85531603e-02, 3.62145168e-02, 1.12739452e-02,\n 1.92824863e-02, 2.77167460e-03, 9.36284219e-03, 4.42833736e-02,\n -8.72421781e-03, 2.24248318e-02, -2.33079119e-02, -2.68183611e-02,\n -6.23229103e-02, 4.62758144e-02, -1.15217453e-02, -8.76315556e-02,\n 9.10353116e-02, -3.50899774e-02, -2.63690074e-02, 3.02645304e-03,\n 4.90949198e-02, 3.89577312e-02, 1.54417041e-03, -7.42893802e-03,\n 1.86900911e-02, -1.32271353e-02, -3.84931645e-03, 2.41074234e-02,\n -2.31360947e-02, -6.19796083e-02, 7.59800309e-03, 3.75572576e-02,\n -9.78920270e-03, 1.57318427e-02, 6.71783411e-03, 3.20584093e-02,\n -3.51541534e-02, 2.12500631e-02, -8.88603617e-03, -4.21540247e-02,\n -4.87273575e-02, 2.68150789e-02, -3.47388234e-02, 5.87046854e-03,\n -4.02389732e-02, 3.51580070e-02, 5.46682516e-03, 1.74374130e-02,\n 8.62322910e-06, 2.85107851e-02, -6.08438265e-03, -3.25101569e-02,\n 3.24176626e-03, -1.13564699e-02, -4.84203072e-03, -5.42517324e-03,\n 1.17713252e-02, -5.13048318e-02, -3.87664255e-02, 1.18483236e-02,\n 6.26959085e-02, 1.59346707e-02, 1.87578180e-03, -1.33172075e-02,\n -1.35980508e-02, -1.81220133e-02, 3.02755047e-02, -3.67191743e-02,\n 4.27540241e-04, 1.07596510e-02, 2.34063470e-02, -2.18867810e-02,\n 7.24822638e-02, -1.47792916e-02, 2.70514104e-02, -1.62461809e-03,\n -9.62833181e-03, 7.51527831e-02, -1.83384548e-02, -1.40937664e-02,\n -1.74570943e-02, 8.50197811e-03, 1.07455618e-02, -1.13631121e-02,\n 1.34659479e-02, -1.50623714e-02, -1.09661600e-02, 1.02901847e-02,\n -1.19531480e-02, 3.35297431e-03, -1.80030647e-05, 1.52924957e-02,\n 2.48016735e-02, 8.05054465e-03, -4.35412429e-03, -2.05988305e-02,\n -6.51060564e-04, 4.86016216e-03, -1.55386834e-03, -3.25303224e-02,\n 1.40105906e-02, -2.20834378e-02, -1.09779218e-02, 2.78607392e-03,\n 6.75100709e-03, -2.59105784e-03, -2.01861887e-02, -3.08798522e-03,\n -1.60777137e-03, -1.12614168e-02, 1.84493607e-03, -1.65059577e-02,\n -4.72416882e-02, 2.47796225e-02, -1.53424764e-02, 1.37306551e-02,\n -2.09388618e-02, 9.20555377e-03, 2.88537938e-02])}, 'Historical Mean': {'name': 'Historical Mean', 'rmse': np.float64(0.02527207039143165), 'rmse_ratio_vs_rw': np.float64(0.9981932360398474), 'direction_accuracy': np.float64(0.49921752738654146), 'dm_stat_vs_rw': np.float64(-1.4321267915623999), 'dm_pval_vs_rw': np.float64(0.15210753827918308), 'predictions': array([0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818]), 'errors': array([-6.57373991e-03, -1.40564804e-02, 2.87799658e-02, 3.46618857e-02,\n -9.67625803e-03, -1.06584736e-02, -2.26156654e-02, -6.56612326e-03,\n 2.75794152e-04, -1.67350364e-02, -4.57181376e-03, 4.19136747e-03,\n 1.05906570e-02, -1.10904719e-02, -6.43174348e-03, 9.29250645e-03,\n 1.39748250e-02, -1.22504585e-02, -1.13915069e-02, -5.10783852e-03,\n 5.60178017e-03, 1.27580892e-03, 1.80732237e-02, -1.31825939e-02,\n 3.72757919e-02, 3.30502257e-02, -2.40143984e-02, 1.37067294e-02,\n 9.71472062e-03, -9.60179619e-03, -7.45927173e-03, -1.15571550e-03,\n -1.71381241e-02, 1.96587776e-03, 4.46920874e-02, 6.29938704e-03,\n -1.94695669e-02, -1.59638895e-02, -1.05348130e-01, -1.53375960e-01,\n 9.94033874e-02, -3.14317247e-02, -1.60512026e-02, -2.99111353e-02,\n 1.67713954e-02, 1.59648702e-02, -1.49792410e-02, 9.78640803e-04,\n -3.35627090e-04, -7.94409096e-04, -2.63061300e-02, -3.19346082e-02,\n 2.70395818e-02, 2.21090221e-02, -1.05876795e-03, -5.44632178e-03,\n -4.66316654e-03, -2.61982040e-03, -1.40350175e-02, 1.32552512e-02,\n 4.21137410e-02, -1.17200931e-02, 5.96435008e-03, -1.30244944e-02,\n 1.21660616e-02, -8.98795172e-03, 6.39248922e-03, -1.56833581e-02,\n 2.19439208e-02, -6.37050123e-03, -8.70651802e-04, -3.28914402e-03,\n 6.46873900e-03, 3.14871846e-02, 7.91128938e-04, -2.62257315e-02,\n -4.34302731e-02, 7.83634316e-03, -3.09434103e-03, -1.88530501e-02,\n 2.65934236e-02, -5.01278494e-03, -1.00077399e-03, -3.36354494e-03,\n 2.62009247e-03, -1.04638785e-03, 4.36374873e-03, -1.34789974e-02,\n -1.03741155e-02, 4.38519856e-03, -2.37191529e-03, -4.73459552e-03,\n 3.67625984e-03, 2.56344365e-03, -6.69642250e-04, 9.64245412e-03,\n -1.90727772e-03, 6.22507517e-03, -1.22595144e-03, 1.00080341e-02,\n 2.13182381e-03, 1.43514498e-02, 2.76021141e-02, 4.83108494e-02,\n 5.50848674e-02, 4.93386466e-02, -4.79705274e-03, 1.41312926e-02,\n -3.21080263e-03, -2.26849235e-02, 1.80728049e-02, 7.21855180e-02,\n 4.31121644e-03, -4.13496460e-03, 8.33481139e-03, -1.32590163e-02,\n 1.79279381e-02, -3.03476517e-03, 1.99150245e-03, -3.04521560e-03,\n 2.99737441e-02, -4.01596399e-02, 1.22049154e-02, 2.51240725e-02,\n -1.11306676e-02, -3.23951130e-03, -5.30189400e-03, -1.78398132e-02,\n -8.26585419e-03, 1.99712205e-02, -1.28186814e-02, -5.29498814e-02,\n -8.69186676e-03, 1.01081074e-02, -4.42866972e-03, -1.24760015e-03,\n 1.85616809e-02, 9.05723101e-02, -3.45195744e-02, 4.29626049e-02,\n 1.71123412e-03, -1.55390272e-02, 2.24221043e-02, -1.66334455e-02,\n -1.19094978e-02, -1.08663656e-02, -3.28492095e-02, -2.02607346e-03,\n 1.62234295e-02, -3.47615640e-03, -1.58413825e-02, 2.00347532e-02,\n -7.75809619e-03, -4.93112819e-02, -1.15582502e-03, 2.92902562e-03,\n -1.71094170e-03, -1.03150761e-02, -2.32456535e-02, -6.46898784e-02,\n -1.12508732e-02, 1.42163268e-02, 7.18398612e-02, 9.10517580e-02,\n 2.20253485e-02, -1.65266782e-02, 2.81327899e-02, 9.07300556e-02,\n -1.87687549e-02, 3.80222443e-02, -9.99698883e-03, 1.31097341e-02,\n -3.16832836e-02, 3.68023028e-02, -3.09787855e-02, -4.99353756e-04,\n 1.74167826e-02, -3.14184744e-02, 4.19900218e-03, 3.83097880e-02,\n -1.21629073e-02, 1.46568084e-02, -1.25197673e-03, -1.07283325e-02,\n -1.40961228e-02, 1.22525578e-02, -6.47003795e-04, -5.65447952e-03,\n -5.36627472e-03, 3.39644860e-04, 1.28914765e-02, 4.45258434e-02,\n 1.80125977e-02, -1.12046085e-02, 1.53141264e-02, 2.25194036e-03,\n -6.46436099e-03, -4.92668178e-04, -3.00856107e-02, 3.09529087e-02,\n -5.43183198e-02, -2.02142151e-02, -3.61522319e-02, 1.93091683e-02,\n -8.97499827e-03, -3.69993583e-03, 2.74981581e-02, 3.22948003e-03,\n 3.57312246e-02, -6.28821359e-03, -3.58396066e-03, -7.13763459e-04,\n -4.14741723e-02, 2.03988151e-02, 1.15429145e-02, -7.30616331e-03,\n 2.20727236e-02, -2.33409965e-02, -1.54073373e-02, -2.79515610e-02,\n -2.27372038e-03, -1.87722312e-03, -2.39046950e-02, -7.26647281e-03,\n -1.54478344e-03, 4.49383588e-03, 8.23482008e-03, -5.54285844e-03,\n 1.28501413e-02, -2.23603158e-02, 1.38840485e-03, 7.42302245e-03,\n -1.39800936e-02, 2.97897217e-03, 1.28908558e-02, -3.40744774e-02,\n 4.67563276e-03, 7.92189564e-03, 4.73139521e-03, 4.32902273e-02,\n -1.25857995e-02, -2.32358436e-03, -1.84409921e-02, -1.53349030e-02,\n 1.49026828e-02, -7.19244958e-03, 8.89354943e-04, -5.33153395e-02,\n 5.59263969e-02, -3.40667866e-02, 5.22045865e-03, -1.59343615e-03,\n -2.51447004e-02, 2.45028341e-03, -1.59381529e-03, 3.12973119e-04,\n -3.23660303e-02, 1.77185446e-02, 2.79369572e-02, 5.69897488e-03,\n -7.50628335e-03, 1.81596321e-02, 5.22805454e-02, 5.70414162e-02,\n -4.44786999e-03, 2.57258052e-02, -6.07054896e-03, -2.93213350e-03,\n -7.21913393e-03, 1.31174707e-02, -2.10501596e-02, 1.14150760e-02,\n 2.39938085e-06, 2.92270819e-03, 2.09090561e-04, 1.66486912e-02,\n -1.33946827e-02, -9.35056572e-03, -2.09869313e-02, 1.41080659e-02,\n -2.78973093e-03, -4.90842020e-03, 7.47486305e-03, 6.09066131e-03,\n -8.74565442e-03, 3.39407951e-02, -3.77976508e-02, -1.55040660e-03,\n -2.70932391e-03, -3.92198236e-03, -1.01043594e-02, 8.67622918e-04,\n -4.46624730e-03, 2.59942923e-03, -4.41715395e-03, 8.86994682e-03,\n -3.14297492e-02, 9.86516155e-04, 3.39285522e-03, -5.21896326e-03,\n 2.31327027e-03, 5.13174335e-04, -3.25761480e-03, -2.47754439e-03,\n 1.52679760e-02, -1.84674052e-02, -5.46788630e-04, -3.54024375e-03,\n -2.24701245e-03, -2.48007551e-04, 3.39906676e-03, 1.81596973e-02,\n -7.15773397e-03, -5.08477407e-03, -1.81766152e-03, -6.67499220e-04,\n -5.10995428e-03, 3.51941561e-03, -8.68563397e-03, -1.70172660e-02,\n -7.69769015e-02, -2.24277777e-02, 9.56209110e-04, 2.63339814e-03,\n -3.21925737e-03, -3.52631352e-03, 1.35463876e-02, -1.04131474e-02,\n -5.40389599e-03, -2.44574463e-03, 2.43055516e-03, -1.10004798e-04,\n 5.85126455e-02, -1.59439762e-02, -5.18782691e-02, -6.05421970e-03,\n 1.68666487e-03, 3.11538057e-03, -6.41428706e-03, -2.12244844e-03,\n -2.05546433e-03, 1.82273058e-02, -1.40163362e-02, -1.15134411e-03,\n -3.12732655e-03, -2.74385788e-02, 2.57637820e-02, 1.38630231e-02,\n 1.05951670e-02, 2.10093351e-03, -2.32549704e-03, -2.01977318e-03,\n 8.01153875e-03, 1.57838994e-02, -3.94647728e-03, -2.15534977e-02,\n -3.54355907e-04, -9.65453722e-04, -1.32109560e-02, 1.33935826e-03,\n -3.97382514e-03, 4.94603113e-03, 2.34802131e-02, -5.05196647e-03,\n 1.25606674e-03, 3.66816997e-02, -1.87609505e-02, -3.28628862e-03,\n 1.19484382e-02, -1.41509026e-02, 1.80100856e-02, 1.07225143e-04,\n -2.22637936e-03, -1.25880567e-02, -8.08355428e-03, -1.97747104e-02,\n -5.12960763e-03, 3.01005884e-03, -1.16264789e-03, 1.03635264e-02,\n 4.75933850e-02, -4.49451569e-03, -3.48503297e-03, 1.29982591e-02,\n 3.19211877e-02, 7.27392694e-03, 1.95164976e-03, 9.68720268e-02,\n 2.46508855e-02, 1.59513525e-02, -1.08418119e-02, -8.43978655e-03,\n 4.75227472e-03, 1.21612520e-02, -2.29106658e-03, 3.96767098e-03,\n 2.15063792e-02, -1.44473750e-02, -7.26284778e-03, 9.08859475e-03,\n -2.24066801e-03, 1.68438783e-04, 9.21472765e-03, 5.54463675e-03,\n 2.89584949e-02, 1.54223894e-02, -5.41993832e-03, -2.58379372e-03,\n -1.71617086e-02, -2.61306795e-02, 6.20657903e-02, -4.66051828e-02,\n 1.15697155e-02, -2.06040140e-03, 2.06124093e-02, 1.56908555e-03,\n -4.74656383e-02, 4.47688177e-02, -3.86189161e-03, 1.03718319e-02,\n 9.69438443e-04, -9.66769448e-03, -6.29031139e-03, 1.45440509e-02,\n 1.37196040e-04, -4.26630628e-03, 2.42842010e-02, 1.88469197e-02,\n 1.23346132e-02, 4.84637964e-02, 4.75887386e-02, -7.88116391e-03,\n -1.20576898e-02, 1.97279385e-02, -1.12171533e-02, 9.26843396e-04,\n -6.04689384e-02, 4.96832222e-03, 3.18314358e-02, 2.75982127e-03,\n -2.62786587e-02, 7.21220617e-03, -2.24073724e-02, 2.97335856e-02,\n -9.79900963e-03, 3.16093716e-02, 3.59873548e-03, 1.63378698e-03,\n -6.89640217e-03, -1.72032881e-02, 1.26989206e-02, -2.56035330e-02,\n 2.06016142e-02, -2.09289609e-02, -1.25489713e-02, 9.33475030e-04,\n 2.58659706e-03, 4.30550002e-02, 1.64118221e-02, -4.86958763e-02,\n 2.92153404e-02, -9.43860748e-04, -4.82096863e-03, -1.70240616e-03,\n 6.57220260e-02, -1.88836915e-02, 1.09204269e-02, -7.57924332e-03,\n -8.06610566e-02, 7.16038555e-04, -2.71903098e-02, 1.76804298e-02,\n 1.38297207e-02, -9.23176581e-03, -3.52595785e-02, 7.18183281e-03,\n 7.98273448e-05, -3.58712245e-03, -5.04141838e-02, 7.48677439e-03,\n 3.87485306e-03, -3.90115625e-03, 4.47442098e-02, 6.27084172e-03,\n -2.93695672e-03, 2.89979389e-02, -9.19376055e-03, -9.25293088e-03,\n 1.09342545e-02, 1.90521908e-03, -5.19068692e-03, -1.08138759e-02,\n 2.14217090e-03, 8.28780723e-03, 2.77968736e-02, 2.01445786e-02,\n 3.91038825e-02, 1.22252000e-02, 1.06212786e-02, 3.21275004e-02,\n -5.17853258e-03, 4.04920370e-02, 8.28276688e-04, 3.88606510e-03,\n -1.00880989e-02, 8.73185121e-03, -7.79370882e-03, 8.49830695e-03,\n -8.67369161e-03, -1.16863553e-02, -1.14768364e-02, 1.53010698e-02,\n 2.30188059e-03, 5.09450313e-02, 4.51290947e-02, 8.95652440e-02,\n -2.18689719e-02, 1.95443899e-02, -7.25032470e-03, 1.72047559e-02,\n 7.73642542e-02, -6.93613414e-02, 3.54063357e-02, 1.04657642e-02,\n 1.84743052e-02, 1.96349351e-03, 8.55466110e-03, 4.34751925e-02,\n -9.53239890e-03, 2.16166507e-02, -2.41160930e-02, -2.76265422e-02,\n -6.31310914e-02, 4.54676333e-02, -1.23299263e-02, -8.84397367e-02,\n 9.02271305e-02, -3.58981585e-02, -2.71771885e-02, 2.21827195e-03,\n 4.82867387e-02, 3.81495501e-02, 7.35989329e-04, -8.23711911e-03,\n 1.78819100e-02, -1.40353164e-02, -4.65749754e-03, 2.32992423e-02,\n -2.39442758e-02, -6.27877893e-02, 6.78982201e-03, 3.67490766e-02,\n -1.05973838e-02, 1.49236616e-02, 5.90965303e-03, 3.12502282e-02,\n -3.59623345e-02, 2.04418820e-02, -9.69421725e-03, -4.29622058e-02,\n -4.95355385e-02, 2.60068978e-02, -3.55470045e-02, 5.06228745e-03,\n -4.10471543e-02, 3.43498259e-02, 4.65864408e-03, 1.66292319e-02,\n -7.99557856e-04, 2.77026040e-02, -6.89256374e-03, -3.33183379e-02,\n 2.43358517e-03, -1.21646510e-02, -5.65021180e-03, -6.23335433e-03,\n 1.09631441e-02, -5.21130129e-02, -3.95746066e-02, 1.10401426e-02,\n 6.18877274e-02, 1.51264896e-02, 1.06760071e-03, -1.41253886e-02,\n -1.44062319e-02, -1.89301944e-02, 2.94673236e-02, -3.75273554e-02,\n -3.80640844e-04, 9.95146989e-03, 2.25981659e-02, -2.26949621e-02,\n 7.16740827e-02, -1.55874727e-02, 2.62432293e-02, -2.43279918e-03,\n -1.04365129e-02, 7.43446021e-02, -1.91466358e-02, -1.49019475e-02,\n -1.82652754e-02, 7.69379703e-03, 9.93738069e-03, -1.21712932e-02,\n 1.26577669e-02, -1.58705525e-02, -1.17743411e-02, 9.48200360e-03,\n -1.27613291e-02, 2.54479322e-03, -8.26184150e-04, 1.44843146e-02,\n 2.39934924e-02, 7.24236356e-03, -5.16230537e-03, -2.14070115e-02,\n -1.45924165e-03, 4.05198107e-03, -2.36204942e-03, -3.33385035e-02,\n 1.32024095e-02, -2.28916189e-02, -1.17861029e-02, 1.97789284e-03,\n 5.94282601e-03, -3.39923893e-03, -2.09943697e-02, -3.89616631e-03,\n -2.41595246e-03, -1.20695978e-02, 1.03675498e-03, -1.73141388e-02,\n -4.80498693e-02, 2.39714414e-02, -1.61506574e-02, 1.29224740e-02,\n -2.17470428e-02, 8.39737269e-03, 2.80456127e-02])}}", + "model_predictions": "{'Random Walk': array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 'Historical Mean': array([0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818, 0.00080818,\n 0.00080818, 0.00080818, 0.00080818, 0.00080818])}", + "val_dates": "DatetimeIndex(['2022-10-01', '2022-10-02', '2022-10-03', '2022-10-04',\n '2022-10-05', '2022-10-06', '2022-10-07', '2022-10-08',\n '2022-10-09', '2022-10-10',\n ...\n '2024-06-21', '2024-06-22', '2024-06-23', '2024-06-24',\n '2024-06-25', '2024-06-26', '2024-06-27', '2024-06-28',\n '2024-06-29', '2024-06-30'],\n dtype='datetime64[ns]', name='datetime', length=639, freq=None)", + "y_true": "[-5.76555882e-03 -1.32482993e-02 2.95881469e-02 3.54700668e-02\n -8.86807695e-03 -9.85029250e-03 -2.18074843e-02 -5.75794217e-03\n 1.08397524e-03 -1.59268553e-02 -3.76363267e-03 4.99954856e-03\n 1.13988381e-02 -1.02822908e-02 -5.62356239e-03 1.01006875e-02\n 1.47830061e-02 -1.14422775e-02 -1.05833258e-02 -4.29965744e-03\n 6.40996125e-03 2.08399000e-03 1.88814048e-02 -1.23744128e-02\n 3.80839730e-02 3.38584068e-02 -2.32062173e-02 1.45149105e-02\n 1.05229017e-02 -8.79361510e-03 -6.65109064e-03 -3.47534413e-04\n -1.63299430e-02 2.77405884e-03 4.55002685e-02 7.10756813e-03\n -1.86613858e-02 -1.51557084e-02 -1.04539949e-01 -1.52567779e-01\n 1.00211568e-01 -3.06235437e-02 -1.52430215e-02 -2.91029542e-02\n 1.75795765e-02 1.67730512e-02 -1.41710599e-02 1.78682189e-03\n 4.72553995e-04 1.37719892e-05 -2.54979489e-02 -3.11264271e-02\n 2.78477629e-02 2.29172032e-02 -2.50586862e-04 -4.63814070e-03\n -3.85498546e-03 -1.81163932e-03 -1.32268364e-02 1.40634323e-02\n 4.29219220e-02 -1.09119120e-02 6.77253117e-03 -1.22163134e-02\n 1.29742427e-02 -8.17977063e-03 7.20067031e-03 -1.48751770e-02\n 2.27521019e-02 -5.56232014e-03 -6.24707169e-05 -2.48096293e-03\n 7.27692009e-03 3.22953657e-02 1.59931002e-03 -2.54175504e-02\n -4.26220920e-02 8.64452424e-03 -2.28615995e-03 -1.80448690e-02\n 2.74016047e-02 -4.20460385e-03 -1.92592901e-04 -2.55536386e-03\n 3.42827356e-03 -2.38206762e-04 5.17192981e-03 -1.26708163e-02\n -9.56593440e-03 5.19337964e-03 -1.56373421e-03 -3.92641443e-03\n 4.48444092e-03 3.37162474e-03 1.38538835e-04 1.04506352e-02\n -1.09909664e-03 7.03325626e-03 -4.17770352e-04 1.08162151e-02\n 2.94000490e-03 1.51596309e-02 2.84102952e-02 4.91190305e-02\n 5.58930485e-02 5.01468277e-02 -3.98887166e-03 1.49394737e-02\n -2.40262154e-03 -2.18767424e-02 1.88809860e-02 7.29936991e-02\n 5.11939752e-03 -3.32678352e-03 9.14299248e-03 -1.24508352e-02\n 1.87361192e-02 -2.22658408e-03 2.79968354e-03 -2.23703451e-03\n 3.07819252e-02 -3.93514588e-02 1.30130964e-02 2.59322536e-02\n -1.03224865e-02 -2.43133022e-03 -4.49371291e-03 -1.70316321e-02\n -7.45767311e-03 2.07794016e-02 -1.20105003e-02 -5.21417004e-02\n -7.88368568e-03 1.09162885e-02 -3.62048863e-03 -4.39419065e-04\n 1.93698620e-02 9.13804912e-02 -3.37113933e-02 4.37707860e-02\n 2.51941521e-03 -1.47308461e-02 2.32302854e-02 -1.58252644e-02\n -1.11013167e-02 -1.00581845e-02 -3.20410285e-02 -1.21789238e-03\n 1.70316106e-02 -2.66797531e-03 -1.50332014e-02 2.08429342e-02\n -6.94991510e-03 -4.85031008e-02 -3.47643933e-04 3.73720671e-03\n -9.02760617e-04 -9.50689505e-03 -2.24374724e-02 -6.38816973e-02\n -1.04426921e-02 1.50245079e-02 7.26480423e-02 9.18599391e-02\n 2.28335296e-02 -1.57184971e-02 2.89409710e-02 9.15382367e-02\n -1.79605739e-02 3.88304254e-02 -9.18880774e-03 1.39179152e-02\n -3.08751025e-02 3.76104839e-02 -3.01706045e-02 3.08827329e-04\n 1.82249637e-02 -3.06102933e-02 5.00718327e-03 3.91179691e-02\n -1.13547262e-02 1.54649894e-02 -4.43795644e-04 -9.92015143e-03\n -1.32879417e-02 1.30607389e-02 1.61177290e-04 -4.84629843e-03\n -4.55809363e-03 1.14782595e-03 1.36996576e-02 4.53340244e-02\n 1.88207788e-02 -1.03964274e-02 1.61223075e-02 3.06012145e-03\n -5.65617990e-03 3.15512907e-04 -2.92774296e-02 3.17610898e-02\n -5.35101387e-02 -1.94060341e-02 -3.53440508e-02 2.01173494e-02\n -8.16681719e-03 -2.89175475e-03 2.83063392e-02 4.03766112e-03\n 3.65394057e-02 -5.48003250e-03 -2.77577958e-03 9.44176263e-05\n -4.06659912e-02 2.12069962e-02 1.23510956e-02 -6.49798223e-03\n 2.28809047e-02 -2.25328154e-02 -1.45991563e-02 -2.71433799e-02\n -1.46553930e-03 -1.06904203e-03 -2.30965140e-02 -6.45829173e-03\n -7.36602355e-04 5.30201697e-03 9.04300116e-03 -4.73467736e-03\n 1.36583224e-02 -2.15521347e-02 2.19658593e-03 8.23120354e-03\n -1.31719125e-02 3.78715326e-03 1.36990369e-02 -3.32662963e-02\n 5.48381384e-03 8.73007673e-03 5.53957629e-03 4.40984084e-02\n -1.17776184e-02 -1.51540328e-03 -1.76328111e-02 -1.45267220e-02\n 1.57108639e-02 -6.38426850e-03 1.69753603e-03 -5.25071585e-02\n 5.67345780e-02 -3.32586056e-02 6.02863973e-03 -7.85255065e-04\n -2.43365193e-02 3.25846449e-03 -7.85634203e-04 1.12115420e-03\n -3.15578492e-02 1.85267257e-02 2.87451383e-02 6.50715597e-03\n -6.69810227e-03 1.89678131e-02 5.30887265e-02 5.78495973e-02\n -3.63968891e-03 2.65339862e-02 -5.26236787e-03 -2.12395241e-03\n -6.41095285e-03 1.39256517e-02 -2.02419785e-02 1.22232571e-02\n 8.10580466e-04 3.73088927e-03 1.01727165e-03 1.74568722e-02\n -1.25865016e-02 -8.54238464e-03 -2.01787502e-02 1.49162470e-02\n -1.98154984e-03 -4.10023911e-03 8.28304413e-03 6.89884239e-03\n -7.93747334e-03 3.47489761e-02 -3.69894697e-02 -7.42225519e-04\n -1.90114283e-03 -3.11380128e-03 -9.29617828e-03 1.67580400e-03\n -3.65806621e-03 3.40761031e-03 -3.60897287e-03 9.67812791e-03\n -3.06215681e-02 1.79469724e-03 4.20103631e-03 -4.41078217e-03\n 3.12145136e-03 1.32135542e-03 -2.44943371e-03 -1.66936331e-03\n 1.60761571e-02 -1.76592241e-02 2.61392456e-04 -2.73206267e-03\n -1.43883136e-03 5.60173534e-04 4.20724785e-03 1.89678784e-02\n -6.34955289e-03 -4.27659299e-03 -1.00948044e-03 1.40681866e-04\n -4.30177319e-03 4.32759670e-03 -7.87745288e-03 -1.62090850e-02\n -7.61687204e-02 -2.16195967e-02 1.76439019e-03 3.44157922e-03\n -2.41107629e-03 -2.71813243e-03 1.43545687e-02 -9.60496634e-03\n -4.59571491e-03 -1.63756355e-03 3.23873624e-03 6.98176287e-04\n 5.93208266e-02 -1.51357951e-02 -5.10700881e-02 -5.24603862e-03\n 2.49484595e-03 3.92356165e-03 -5.60610597e-03 -1.31426735e-03\n -1.24728325e-03 1.90354868e-02 -1.32081551e-02 -3.43163021e-04\n -2.31914546e-03 -2.66303977e-02 2.65719631e-02 1.46712042e-02\n 1.14033481e-02 2.90911459e-03 -1.51731596e-03 -1.21159210e-03\n 8.81971984e-03 1.65920805e-02 -3.13829620e-03 -2.07453166e-02\n 4.53825178e-04 -1.57272637e-04 -1.24027749e-02 2.14753935e-03\n -3.16564405e-03 5.75421222e-03 2.42883942e-02 -4.24378538e-03\n 2.06424782e-03 3.74898808e-02 -1.79527694e-02 -2.47810754e-03\n 1.27566193e-02 -1.33427215e-02 1.88182667e-02 9.15406228e-04\n -1.41819827e-03 -1.17798757e-02 -7.27537320e-03 -1.89665293e-02\n -4.32142654e-03 3.81823993e-03 -3.54466807e-04 1.11717075e-02\n 4.84015661e-02 -3.68633461e-03 -2.67685189e-03 1.38064402e-02\n 3.27293688e-02 8.08210803e-03 2.75983085e-03 9.76802079e-02\n 2.54590666e-02 1.67595336e-02 -1.00336308e-02 -7.63160547e-03\n 5.56045581e-03 1.29694331e-02 -1.48288550e-03 4.77585206e-03\n 2.23145603e-02 -1.36391940e-02 -6.45466670e-03 9.89677584e-03\n -1.43248693e-03 9.76619868e-04 1.00229087e-02 6.35281784e-03\n 2.97666760e-02 1.62305705e-02 -4.61175724e-03 -1.77561263e-03\n -1.63535275e-02 -2.53224984e-02 6.28739714e-02 -4.57970017e-02\n 1.23778966e-02 -1.25222031e-03 2.14205904e-02 2.37726663e-03\n -4.66574572e-02 4.55769988e-02 -3.05371053e-03 1.11800130e-02\n 1.77761953e-03 -8.85951339e-03 -5.48213031e-03 1.53522319e-02\n 9.45377125e-04 -3.45812519e-03 2.50923821e-02 1.96551008e-02\n 1.31427943e-02 4.92719775e-02 4.83969196e-02 -7.07298282e-03\n -1.12495087e-02 2.05361196e-02 -1.04089723e-02 1.73502448e-03\n -5.96607574e-02 5.77650330e-03 3.26396169e-02 3.56800236e-03\n -2.54704776e-02 8.02038726e-03 -2.15991913e-02 3.05417667e-02\n -8.99082855e-03 3.24175526e-02 4.40691657e-03 2.44196807e-03\n -6.08822109e-03 -1.63951071e-02 1.35071016e-02 -2.47953519e-02\n 2.14097953e-02 -2.01207798e-02 -1.17407902e-02 1.74165612e-03\n 3.39477815e-03 4.38631813e-02 1.72200032e-02 -4.78876952e-02\n 3.00235215e-02 -1.35679663e-04 -4.01278755e-03 -8.94225073e-04\n 6.65302071e-02 -1.80755104e-02 1.17286080e-02 -6.77106223e-03\n -7.98528755e-02 1.52421964e-03 -2.63821287e-02 1.84886109e-02\n 1.46379018e-02 -8.42358473e-03 -3.44513975e-02 7.99001389e-03\n 8.88008430e-04 -2.77894136e-03 -4.96060027e-02 8.29495547e-03\n 4.68303414e-03 -3.09297517e-03 4.55523909e-02 7.07902281e-03\n -2.12877564e-03 2.98061199e-02 -8.38557946e-03 -8.44474980e-03\n 1.17424356e-02 2.71340017e-03 -4.38250583e-03 -1.00056949e-02\n 2.95035199e-03 9.09598831e-03 2.86050547e-02 2.09527597e-02\n 3.99120636e-02 1.30333811e-02 1.14294597e-02 3.29356814e-02\n -4.37035149e-03 4.13002181e-02 1.63645777e-03 4.69424618e-03\n -9.27991780e-03 9.54003229e-03 -6.98552773e-03 9.30648803e-03\n -7.86551053e-03 -1.08781742e-02 -1.06686554e-02 1.61092509e-02\n 3.11006168e-03 5.17532124e-02 4.59372758e-02 9.03734251e-02\n -2.10607909e-02 2.03525710e-02 -6.44214361e-03 1.80129369e-02\n 7.81724353e-02 -6.85531603e-02 3.62145168e-02 1.12739452e-02\n 1.92824863e-02 2.77167460e-03 9.36284219e-03 4.42833736e-02\n -8.72421781e-03 2.24248318e-02 -2.33079119e-02 -2.68183611e-02\n -6.23229103e-02 4.62758144e-02 -1.15217453e-02 -8.76315556e-02\n 9.10353116e-02 -3.50899774e-02 -2.63690074e-02 3.02645304e-03\n 4.90949198e-02 3.89577312e-02 1.54417041e-03 -7.42893802e-03\n 1.86900911e-02 -1.32271353e-02 -3.84931645e-03 2.41074234e-02\n -2.31360947e-02 -6.19796083e-02 7.59800309e-03 3.75572576e-02\n -9.78920270e-03 1.57318427e-02 6.71783411e-03 3.20584093e-02\n -3.51541534e-02 2.12500631e-02 -8.88603617e-03 -4.21540247e-02\n -4.87273575e-02 2.68150789e-02 -3.47388234e-02 5.87046854e-03\n -4.02389732e-02 3.51580070e-02 5.46682516e-03 1.74374130e-02\n 8.62322910e-06 2.85107851e-02 -6.08438265e-03 -3.25101569e-02\n 3.24176626e-03 -1.13564699e-02 -4.84203072e-03 -5.42517324e-03\n 1.17713252e-02 -5.13048318e-02 -3.87664255e-02 1.18483236e-02\n 6.26959085e-02 1.59346707e-02 1.87578180e-03 -1.33172075e-02\n -1.35980508e-02 -1.81220133e-02 3.02755047e-02 -3.67191743e-02\n 4.27540241e-04 1.07596510e-02 2.34063470e-02 -2.18867810e-02\n 7.24822638e-02 -1.47792916e-02 2.70514104e-02 -1.62461809e-03\n -9.62833181e-03 7.51527831e-02 -1.83384548e-02 -1.40937664e-02\n -1.74570943e-02 8.50197811e-03 1.07455618e-02 -1.13631121e-02\n 1.34659479e-02 -1.50623714e-02 -1.09661600e-02 1.02901847e-02\n -1.19531480e-02 3.35297431e-03 -1.80030647e-05 1.52924957e-02\n 2.48016735e-02 8.05054465e-03 -4.35412429e-03 -2.05988305e-02\n -6.51060564e-04 4.86016216e-03 -1.55386834e-03 -3.25303224e-02\n 1.40105906e-02 -2.20834378e-02 -1.09779218e-02 2.78607392e-03\n 6.75100709e-03 -2.59105784e-03 -2.01861887e-02 -3.08798522e-03\n -1.60777137e-03 -1.12614168e-02 1.84493607e-03 -1.65059577e-02\n -4.72416882e-02 2.47796225e-02 -1.53424764e-02 1.37306551e-02\n -2.09388618e-02 9.20555377e-03 2.88537938e-02]", + "status": "success" + }, + "causality": { + "daily_results": " cause effect ... significant_raw significant_corrected\n0 volume log_return ... False False\n1 volume log_return ... False False\n2 volume log_return ... False False\n3 volume log_return ... False False\n4 volume log_return ... False False\n5 log_return volume ... False False\n6 log_return volume ... False False\n7 log_return volume ... False False\n8 log_return volume ... False False\n9 log_return volume ... False False\n10 abs_return volume ... True True\n11 abs_return volume ... True True\n12 abs_return volume ... True True\n13 abs_return volume ... True True\n14 abs_return volume ... True True\n15 volume abs_return ... False False\n16 volume abs_return ... False False\n17 volume abs_return ... False False\n18 volume abs_return ... False False\n19 volume abs_return ... True True\n20 taker_buy_ratio log_return ... True False\n21 taker_buy_ratio log_return ... False False\n22 taker_buy_ratio log_return ... False False\n23 taker_buy_ratio log_return ... True False\n24 taker_buy_ratio log_return ... True False\n25 log_return taker_buy_ratio ... True True\n26 log_return taker_buy_ratio ... True True\n27 log_return taker_buy_ratio ... True True\n28 log_return taker_buy_ratio ... True True\n29 log_return taker_buy_ratio ... True True\n30 squared_return volume ... False False\n31 squared_return volume ... True True\n32 squared_return volume ... True True\n33 squared_return volume ... True True\n34 squared_return volume ... True True\n35 volume squared_return ... False False\n36 volume squared_return ... False False\n37 volume squared_return ... False False\n38 volume squared_return ... False False\n39 volume squared_return ... False False\n40 range_pct log_return ... False False\n41 range_pct log_return ... False False\n42 range_pct log_return ... False False\n43 range_pct log_return ... False False\n44 range_pct log_return ... True False\n45 log_return range_pct ... False False\n46 log_return range_pct ... True False\n47 log_return range_pct ... True False\n48 log_return range_pct ... True False\n49 log_return range_pct ... True True\n\n[50 rows x 8 columns]", + "cross_timeframe_results": " cause effect ... significant_raw significant_corrected\n0 hourly_intraday_vol log_return ... False False\n1 hourly_intraday_vol log_return ... False False\n2 hourly_intraday_vol log_return ... False False\n3 hourly_intraday_vol log_return ... False False\n4 hourly_intraday_vol log_return ... True True\n5 hourly_volume_sum log_return ... False False\n6 hourly_volume_sum log_return ... False False\n7 hourly_volume_sum log_return ... False False\n8 hourly_volume_sum log_return ... False False\n9 hourly_volume_sum log_return ... False False\n10 hourly_max_abs_return log_return ... False False\n11 hourly_max_abs_return log_return ... False False\n12 hourly_max_abs_return log_return ... False False\n13 hourly_max_abs_return log_return ... False False\n14 hourly_max_abs_return log_return ... True False\n\n[15 rows x 8 columns]", + "all_results": " cause effect ... significant_raw significant_corrected\n0 volume log_return ... False False\n1 volume log_return ... False False\n2 volume log_return ... False False\n3 volume log_return ... False False\n4 volume log_return ... False False\n.. ... ... ... ... ...\n60 hourly_max_abs_return log_return ... False False\n61 hourly_max_abs_return log_return ... False False\n62 hourly_max_abs_return log_return ... False False\n63 hourly_max_abs_return log_return ... False False\n64 hourly_max_abs_return log_return ... True False\n\n[65 rows x 8 columns]", + "status": "success" + }, + "anomaly": { + "anomaly_result": " log_return abs_return ... anomaly_votes anomaly_ensemble\ndatetime ... \n2017-09-05 0.062941 0.062941 ... 3 1\n2017-09-06 0.056390 0.056390 ... 0 0\n2017-09-07 0.015431 0.015431 ... 0 0\n2017-09-08 -0.091169 0.091169 ... 3 1\n2017-09-09 -0.005617 0.005617 ... 1 0\n... ... ... ... ... ...\n2026-01-28 0.000560 0.000560 ... 0 0\n2026-01-29 -0.053474 0.053474 ... 1 0\n2026-01-30 -0.004614 0.004614 ... 0 0\n2026-01-31 -0.067748 0.067748 ... 1 0\n2026-02-01 -0.022773 0.022773 ... 0 0\n\n[3072 rows x 11 columns]", + "garch_anomaly": "datetime\n2017-08-18 0\n2017-08-19 0\n2017-08-20 0\n2017-08-21 0\n2017-08-22 0\n ..\n2026-01-28 0\n2026-01-29 0\n2026-01-30 0\n2026-01-31 0\n2026-02-01 0\nLength: 3090, dtype: int64", + "event_alignment": " anomaly_date event_date event_name diff_days\n0 2020-05-10 2020-05-11 第三次减半 1\n1 2017-12-16 2017-12-17 2017年牛市顶点 1\n2 2017-12-19 2017-12-17 2017年牛市顶点 2\n3 2017-12-20 2017-12-17 2017年牛市顶点 3\n4 2017-12-21 2017-12-17 2017年牛市顶点 4\n5 2017-12-22 2017-12-17 2017年牛市顶点 5\n6 2018-12-20 2018-12-15 2018年熊市底部 5\n7 2020-03-08 2020-03-12 新冠黑色星期四 4\n8 2020-03-12 2020-03-12 新冠黑色星期四 0\n9 2020-03-13 2020-03-12 新冠黑色星期四 1\n10 2020-03-14 2020-03-12 新冠黑色星期四 2\n11 2020-03-15 2020-03-12 新冠黑色星期四 3\n12 2020-03-16 2020-03-12 新冠黑色星期四 4\n13 2020-03-17 2020-03-12 新冠黑色星期四 5\n14 2022-06-13 2022-06-18 Luna/3AC 暴跌 5\n15 2022-06-16 2022-06-18 Luna/3AC 暴跌 2\n16 2022-06-18 2022-06-18 Luna/3AC 暴跌 0\n17 2022-06-19 2022-06-18 Luna/3AC 暴跌 1\n18 2022-11-08 2022-11-09 FTX 崩盘 1\n19 2022-11-09 2022-11-09 FTX 崩盘 0\n20 2022-11-10 2022-11-09 FTX 崩盘 1", + "precursor_results": "{'auc': np.float64(0.993544609941045), 'feature_importances': range_pct_max_5d 0.085575\nrange_pct_std_5d 0.083581\nabs_return_std_5d 0.060453\nabs_return_max_5d 0.058301\nrange_pct_deviation_20d 0.056184\n ... \nvolume_ratio_min_20d 0.000683\nvol_7d_min_5d 0.000681\nrange_pct_min_20d 0.000581\nvolume_ratio_min_5d 0.000497\ntaker_buy_ratio_min_5d 0.000308\nLength: 90, dtype: float64, 'y_true': datetime\n2017-09-24 0\n2017-09-25 1\n2017-09-26 0\n2017-09-27 0\n2017-09-28 0\n ..\n2026-01-28 0\n2026-01-29 0\n2026-01-30 0\n2026-01-31 0\n2026-02-01 0\nName: anomaly_ensemble, Length: 3053, dtype: int64, 'y_prob': array([0.17759581, 0.02449301, 0.14630271, ..., 0. , 0.24951762,\n 0. ]), 'fpr': array([0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 6.85166153e-04,\n 6.85166153e-04, 1.02774923e-03, 1.02774923e-03, 1.71291538e-03,\n 1.71291538e-03, 2.05549846e-03, 2.05549846e-03, 2.39808153e-03,\n 2.39808153e-03, 2.74066461e-03, 2.74066461e-03, 3.42583076e-03,\n 3.42583076e-03, 3.76841384e-03, 3.76841384e-03, 4.11099692e-03,\n 4.11099692e-03, 4.45357999e-03, 4.45357999e-03, 6.85166153e-03,\n 6.85166153e-03, 8.56457691e-03, 8.56457691e-03, 8.90715999e-03,\n 8.90715999e-03, 1.09626584e-02, 1.09626584e-02, 1.16478246e-02,\n 1.16478246e-02, 1.23329908e-02, 1.23329908e-02, 1.30181569e-02,\n 1.30181569e-02, 1.50736554e-02, 1.50736554e-02, 1.78143200e-02,\n 1.78143200e-02, 1.91846523e-02, 1.91846523e-02, 2.02124015e-02,\n 2.02124015e-02, 2.46659815e-02, 2.46659815e-02, 2.77492292e-02,\n 2.77492292e-02, 3.08324769e-02, 3.08324769e-02, 3.11750600e-02,\n 3.11750600e-02, 3.49434738e-02, 3.49434738e-02, 3.97396369e-02,\n 3.97396369e-02, 6.85166153e-02, 6.85166153e-02, 7.39979445e-02,\n 7.39979445e-02, 8.70161014e-02, 8.70161014e-02, 9.76361768e-02,\n 9.76361768e-02, 1.09284001e-01, 1.10311751e-01, 1.14765331e-01,\n 1.15450497e-01, 1.17505995e-01, 1.18191161e-01, 1.26070572e-01,\n 1.29838986e-01, 1.32237067e-01, 1.32922234e-01, 1.35320315e-01,\n 1.36348064e-01, 1.38746146e-01, 1.40116478e-01, 1.41144227e-01,\n 1.42514560e-01, 1.43542309e-01, 1.44227475e-01, 1.47995889e-01,\n 1.48681055e-01, 1.50051387e-01, 1.68550874e-01, 1.75402535e-01,\n 1.76087701e-01, 1.77800617e-01, 1.78485783e-01, 1.79513532e-01,\n 1.80198698e-01, 1.81226447e-01, 1.82254197e-01, 1.86707777e-01,\n 1.88763275e-01, 1.89448441e-01, 1.90476190e-01, 1.91846523e-01,\n 1.94587187e-01, 1.95957520e-01, 1.96985269e-01, 1.99040767e-01,\n 2.00068517e-01, 2.00411100e-01, 2.01781432e-01, 2.02124015e-01,\n 2.03151764e-01, 2.04864680e-01, 1.00000000e+00]), 'tpr': array([0. , 0.00746269, 0.3880597 , 0.3880597 , 0.44029851,\n 0.44029851, 0.49253731, 0.49253731, 0.51492537, 0.51492537,\n 0.55970149, 0.55970149, 0.56716418, 0.56716418, 0.64179104,\n 0.64179104, 0.74626866, 0.74626866, 0.7761194 , 0.7761194 ,\n 0.78358209, 0.78358209, 0.79104478, 0.79104478, 0.79850746,\n 0.79850746, 0.80597015, 0.80597015, 0.8358209 , 0.8358209 ,\n 0.84328358, 0.84328358, 0.88059701, 0.88059701, 0.8880597 ,\n 0.8880597 , 0.89552239, 0.89552239, 0.90298507, 0.90298507,\n 0.91044776, 0.91044776, 0.91791045, 0.91791045, 0.92537313,\n 0.92537313, 0.93283582, 0.93283582, 0.94029851, 0.94029851,\n 0.94776119, 0.94776119, 0.95522388, 0.95522388, 0.96268657,\n 0.96268657, 0.97014925, 0.97014925, 0.97761194, 0.97761194,\n 0.98507463, 0.98507463, 0.99253731, 0.99253731, 1. ,\n 1. , 1. , 1. , 1. , 1. ,\n 1. , 1. , 1. , 1. , 1. ,\n 1. , 1. , 1. , 1. , 1. ,\n 1. , 1. , 1. , 1. , 1. ,\n 1. , 1. , 1. , 1. , 1. ,\n 1. , 1. , 1. , 1. , 1. ,\n 1. , 1. , 1. , 1. , 1. ,\n 1. , 1. , 1. , 1. , 1. ,\n 1. , 1. , 1. , 1. , 1. ,\n 1. ])}", + "status": "success" } } \ No newline at end of file diff --git a/output/anomaly/anomaly_feature_distributions.png b/output/anomaly/anomaly_feature_distributions.png index 8a6e9cb..fc0c5f9 100644 Binary files a/output/anomaly/anomaly_feature_distributions.png and b/output/anomaly/anomaly_feature_distributions.png differ diff --git a/output/anomaly/anomaly_price_chart.png b/output/anomaly/anomaly_price_chart.png index f4d7d83..9317dfd 100644 Binary files a/output/anomaly/anomaly_price_chart.png and b/output/anomaly/anomaly_price_chart.png differ diff --git a/output/anomaly/precursor_feature_importance.png b/output/anomaly/precursor_feature_importance.png index d252750..ddbb7aa 100644 Binary files a/output/anomaly/precursor_feature_importance.png and b/output/anomaly/precursor_feature_importance.png differ diff --git a/output/anomaly/precursor_roc_curve.png b/output/anomaly/precursor_roc_curve.png index 64b912c..47aa4fc 100644 Binary files a/output/anomaly/precursor_roc_curve.png and b/output/anomaly/precursor_roc_curve.png differ diff --git a/output/calendar/calendar_hour_effect.png b/output/calendar/calendar_hour_effect.png index e6a9fe6..0cbe409 100644 Binary files a/output/calendar/calendar_hour_effect.png and b/output/calendar/calendar_hour_effect.png differ diff --git a/output/calendar/calendar_month_effect.png b/output/calendar/calendar_month_effect.png index 0bcebf3..9bb9b56 100644 Binary files a/output/calendar/calendar_month_effect.png and b/output/calendar/calendar_month_effect.png differ diff --git a/output/calendar/calendar_quarter_boundary_effect.png b/output/calendar/calendar_quarter_boundary_effect.png index f684eda..55c8292 100644 Binary files a/output/calendar/calendar_quarter_boundary_effect.png and b/output/calendar/calendar_quarter_boundary_effect.png differ diff --git a/output/calendar/calendar_weekday_effect.png b/output/calendar/calendar_weekday_effect.png index 648145f..3aad3f0 100644 Binary files a/output/calendar/calendar_weekday_effect.png and b/output/calendar/calendar_weekday_effect.png differ diff --git a/output/causality/granger_causal_network.png b/output/causality/granger_causal_network.png index 354c967..d547788 100644 Binary files a/output/causality/granger_causal_network.png and b/output/causality/granger_causal_network.png differ diff --git a/output/causality/granger_pvalue_heatmap.png b/output/causality/granger_pvalue_heatmap.png index e63e343..cedfa73 100644 Binary files a/output/causality/granger_pvalue_heatmap.png and b/output/causality/granger_pvalue_heatmap.png differ diff --git a/output/clustering/cluster_heatmap_gmm.png b/output/clustering/cluster_heatmap_gmm.png index 68a2faf..1d148d2 100644 Binary files a/output/clustering/cluster_heatmap_gmm.png and b/output/clustering/cluster_heatmap_gmm.png differ diff --git a/output/clustering/cluster_heatmap_k-means.png b/output/clustering/cluster_heatmap_k-means.png index 6bb1469..ad1db59 100644 Binary files a/output/clustering/cluster_heatmap_k-means.png and b/output/clustering/cluster_heatmap_k-means.png differ diff --git a/output/clustering/cluster_k_selection.png b/output/clustering/cluster_k_selection.png index 3b1eaae..f698fc2 100644 Binary files a/output/clustering/cluster_k_selection.png and b/output/clustering/cluster_k_selection.png differ diff --git a/output/clustering/cluster_pca_gmm.png b/output/clustering/cluster_pca_gmm.png index d3070ff..9494c60 100644 Binary files a/output/clustering/cluster_pca_gmm.png and b/output/clustering/cluster_pca_gmm.png differ diff --git a/output/clustering/cluster_pca_k-means.png b/output/clustering/cluster_pca_k-means.png index 1027f8b..70faee3 100644 Binary files a/output/clustering/cluster_pca_k-means.png and b/output/clustering/cluster_pca_k-means.png differ diff --git a/output/clustering/cluster_silhouette_k-means.png b/output/clustering/cluster_silhouette_k-means.png index d3289fa..fdf0328 100644 Binary files a/output/clustering/cluster_silhouette_k-means.png and b/output/clustering/cluster_silhouette_k-means.png differ diff --git a/output/clustering/cluster_state_timeseries.png b/output/clustering/cluster_state_timeseries.png index 474b045..70c9e6a 100644 Binary files a/output/clustering/cluster_state_timeseries.png and b/output/clustering/cluster_state_timeseries.png differ diff --git a/output/clustering/cluster_transition_matrix.png b/output/clustering/cluster_transition_matrix.png index 764a85b..6f4b816 100644 Binary files a/output/clustering/cluster_transition_matrix.png and b/output/clustering/cluster_transition_matrix.png differ diff --git a/output/evidence_dashboard.png b/output/evidence_dashboard.png index 95aafde..b65d41b 100644 Binary files a/output/evidence_dashboard.png and b/output/evidence_dashboard.png differ diff --git a/output/fft/fft_bandpass_components.png b/output/fft/fft_bandpass_components.png index ece56ad..2944bfb 100644 Binary files a/output/fft/fft_bandpass_components.png and b/output/fft/fft_bandpass_components.png differ diff --git a/output/fft/fft_multi_timeframe.png b/output/fft/fft_multi_timeframe.png index cd8e6e3..7f1b3a6 100644 Binary files a/output/fft/fft_multi_timeframe.png and b/output/fft/fft_multi_timeframe.png differ diff --git a/output/fft/fft_power_spectrum.png b/output/fft/fft_power_spectrum.png index 9bc1ce6..407c476 100644 Binary files a/output/fft/fft_power_spectrum.png and b/output/fft/fft_power_spectrum.png differ diff --git a/output/fractal/fractal_box_counting.png b/output/fractal/fractal_box_counting.png index 6047c80..ee3a173 100644 Binary files a/output/fractal/fractal_box_counting.png and b/output/fractal/fractal_box_counting.png differ diff --git a/output/fractal/fractal_monte_carlo.png b/output/fractal/fractal_monte_carlo.png index 66d784e..331d1f6 100644 Binary files a/output/fractal/fractal_monte_carlo.png and b/output/fractal/fractal_monte_carlo.png differ diff --git a/output/fractal/fractal_self_similarity.png b/output/fractal/fractal_self_similarity.png index bdbb4e3..16b47fc 100644 Binary files a/output/fractal/fractal_self_similarity.png and b/output/fractal/fractal_self_similarity.png differ diff --git a/output/halving/halving_combined_summary.png b/output/halving/halving_combined_summary.png index 42ac250..0c4eef5 100644 Binary files a/output/halving/halving_combined_summary.png and b/output/halving/halving_combined_summary.png differ diff --git a/output/halving/halving_cumulative_returns.png b/output/halving/halving_cumulative_returns.png index 505e657..eb584d7 100644 Binary files a/output/halving/halving_cumulative_returns.png and b/output/halving/halving_cumulative_returns.png differ diff --git a/output/halving/halving_normalized_trajectories.png b/output/halving/halving_normalized_trajectories.png index d8880e6..780e86c 100644 Binary files a/output/halving/halving_normalized_trajectories.png and b/output/halving/halving_normalized_trajectories.png differ diff --git a/output/halving/halving_pre_post_returns.png b/output/halving/halving_pre_post_returns.png index d1006e6..44681ca 100644 Binary files a/output/halving/halving_pre_post_returns.png and b/output/halving/halving_pre_post_returns.png differ diff --git a/output/hurst/hurst_multi_timeframe.png b/output/hurst/hurst_multi_timeframe.png index c3effc6..476c617 100644 Binary files a/output/hurst/hurst_multi_timeframe.png and b/output/hurst/hurst_multi_timeframe.png differ diff --git a/output/hurst/hurst_rolling.png b/output/hurst/hurst_rolling.png index e6ffdda..1ce452f 100644 Binary files a/output/hurst/hurst_rolling.png and b/output/hurst/hurst_rolling.png differ diff --git a/output/hurst/hurst_rs_loglog.png b/output/hurst/hurst_rs_loglog.png index 4438c90..d9215cf 100644 Binary files a/output/hurst/hurst_rs_loglog.png and b/output/hurst/hurst_rs_loglog.png differ diff --git a/output/indicators/best_indicator_train.png b/output/indicators/best_indicator_train.png index 35550c6..7c21c56 100644 Binary files a/output/indicators/best_indicator_train.png and b/output/indicators/best_indicator_train.png differ diff --git a/output/indicators/best_indicator_val.png b/output/indicators/best_indicator_val.png index 8578004..2cbd6c9 100644 Binary files a/output/indicators/best_indicator_val.png and b/output/indicators/best_indicator_val.png differ diff --git a/output/indicators/ic_distribution_train.png b/output/indicators/ic_distribution_train.png index 27e88c4..5cfdcc7 100644 Binary files a/output/indicators/ic_distribution_train.png and b/output/indicators/ic_distribution_train.png differ diff --git a/output/indicators/ic_distribution_val.png b/output/indicators/ic_distribution_val.png index bc71137..8696142 100644 Binary files a/output/indicators/ic_distribution_val.png and b/output/indicators/ic_distribution_val.png differ diff --git a/output/indicators/pvalue_heatmap_train.png b/output/indicators/pvalue_heatmap_train.png index 6aad8db..268a1ea 100644 Binary files a/output/indicators/pvalue_heatmap_train.png and b/output/indicators/pvalue_heatmap_train.png differ diff --git a/output/indicators/pvalue_heatmap_val.png b/output/indicators/pvalue_heatmap_val.png index ee0ebf0..ac07c16 100644 Binary files a/output/indicators/pvalue_heatmap_val.png and b/output/indicators/pvalue_heatmap_val.png differ diff --git a/output/patterns/pattern_counts_train.png b/output/patterns/pattern_counts_train.png index 17aa12c..d6f050e 100644 Binary files a/output/patterns/pattern_counts_train.png and b/output/patterns/pattern_counts_train.png differ diff --git a/output/patterns/pattern_counts_val.png b/output/patterns/pattern_counts_val.png index b4697ba..ac697c6 100644 Binary files a/output/patterns/pattern_counts_val.png and b/output/patterns/pattern_counts_val.png differ diff --git a/output/patterns/pattern_forward_returns_train.png b/output/patterns/pattern_forward_returns_train.png index 944ea36..771298d 100644 Binary files a/output/patterns/pattern_forward_returns_train.png and b/output/patterns/pattern_forward_returns_train.png differ diff --git a/output/patterns/pattern_forward_returns_val.png b/output/patterns/pattern_forward_returns_val.png index 58ebe35..6f555e3 100644 Binary files a/output/patterns/pattern_forward_returns_val.png and b/output/patterns/pattern_forward_returns_val.png differ diff --git a/output/patterns/pattern_hit_rate_train.png b/output/patterns/pattern_hit_rate_train.png index cfc6c81..11cd4b2 100644 Binary files a/output/patterns/pattern_hit_rate_train.png and b/output/patterns/pattern_hit_rate_train.png differ diff --git a/output/patterns/pattern_hit_rate_val.png b/output/patterns/pattern_hit_rate_val.png index 5a20751..84a246d 100644 Binary files a/output/patterns/pattern_hit_rate_val.png and b/output/patterns/pattern_hit_rate_val.png differ diff --git a/output/power_law/power_law_corridor.png b/output/power_law/power_law_corridor.png index ae2db0e..a9fc5ab 100644 Binary files a/output/power_law/power_law_corridor.png and b/output/power_law/power_law_corridor.png differ diff --git a/output/power_law/power_law_loglog_regression.png b/output/power_law/power_law_loglog_regression.png index 54fc72e..1760017 100644 Binary files a/output/power_law/power_law_loglog_regression.png and b/output/power_law/power_law_loglog_regression.png differ diff --git a/output/power_law/power_law_model_comparison.png b/output/power_law/power_law_model_comparison.png index a1f5586..f2b42f6 100644 Binary files a/output/power_law/power_law_model_comparison.png and b/output/power_law/power_law_model_comparison.png differ diff --git a/output/power_law/power_law_residual_distribution.png b/output/power_law/power_law_residual_distribution.png index 20dddad..5926eaf 100644 Binary files a/output/power_law/power_law_residual_distribution.png and b/output/power_law/power_law_residual_distribution.png differ diff --git a/output/price_overview.png b/output/price_overview.png index f42e4b2..8e6c481 100644 Binary files a/output/price_overview.png and b/output/price_overview.png differ diff --git a/output/returns/garch_conditional_volatility.png b/output/returns/garch_conditional_volatility.png index a07d715..a3384e6 100644 Binary files a/output/returns/garch_conditional_volatility.png and b/output/returns/garch_conditional_volatility.png differ diff --git a/output/returns/multi_timeframe_distributions.png b/output/returns/multi_timeframe_distributions.png index 5151ed7..0cefa30 100644 Binary files a/output/returns/multi_timeframe_distributions.png and b/output/returns/multi_timeframe_distributions.png differ diff --git a/output/returns/returns_histogram_vs_normal.png b/output/returns/returns_histogram_vs_normal.png index 161a07c..9682f8f 100644 Binary files a/output/returns/returns_histogram_vs_normal.png and b/output/returns/returns_histogram_vs_normal.png differ diff --git a/output/returns/returns_qq_plot.png b/output/returns/returns_qq_plot.png index 243696e..66c6997 100644 Binary files a/output/returns/returns_qq_plot.png and b/output/returns/returns_qq_plot.png differ diff --git a/output/time_series/ts_cumulative_error.png b/output/time_series/ts_cumulative_error.png index 59f4157..e5125a2 100644 Binary files a/output/time_series/ts_cumulative_error.png and b/output/time_series/ts_cumulative_error.png differ diff --git a/output/time_series/ts_direction_accuracy.png b/output/time_series/ts_direction_accuracy.png index e28d3a4..98c50f2 100644 Binary files a/output/time_series/ts_direction_accuracy.png and b/output/time_series/ts_direction_accuracy.png differ diff --git a/output/time_series/ts_predictions_comparison.png b/output/time_series/ts_predictions_comparison.png index fe2b612..29fd6fb 100644 Binary files a/output/time_series/ts_predictions_comparison.png and b/output/time_series/ts_predictions_comparison.png differ diff --git a/output/volatility/acf_power_law_fit.png b/output/volatility/acf_power_law_fit.png index 90a239e..a8cb30b 100644 Binary files a/output/volatility/acf_power_law_fit.png and b/output/volatility/acf_power_law_fit.png differ diff --git a/output/volatility/garch_model_comparison.png b/output/volatility/garch_model_comparison.png index 9268c97..6056178 100644 Binary files a/output/volatility/garch_model_comparison.png and b/output/volatility/garch_model_comparison.png differ diff --git a/output/volatility/leverage_effect_scatter.png b/output/volatility/leverage_effect_scatter.png index 189d8be..5eab556 100644 Binary files a/output/volatility/leverage_effect_scatter.png and b/output/volatility/leverage_effect_scatter.png differ diff --git a/output/volatility/realized_volatility_multiwindow.png b/output/volatility/realized_volatility_multiwindow.png index af49b94..c5b3981 100644 Binary files a/output/volatility/realized_volatility_multiwindow.png and b/output/volatility/realized_volatility_multiwindow.png differ diff --git a/output/volume_price/granger_causality_heatmap.png b/output/volume_price/granger_causality_heatmap.png index 856e6bf..d70a9f1 100644 Binary files a/output/volume_price/granger_causality_heatmap.png and b/output/volume_price/granger_causality_heatmap.png differ diff --git a/output/volume_price/obv_divergence.png b/output/volume_price/obv_divergence.png index 3021e8c..9b95202 100644 Binary files a/output/volume_price/obv_divergence.png and b/output/volume_price/obv_divergence.png differ diff --git a/output/volume_price/taker_buy_lead_lag.png b/output/volume_price/taker_buy_lead_lag.png index 078d2c9..83c1ac0 100644 Binary files a/output/volume_price/taker_buy_lead_lag.png and b/output/volume_price/taker_buy_lead_lag.png differ diff --git a/output/volume_price/volume_return_scatter.png b/output/volume_price/volume_return_scatter.png index 4e86d56..77df312 100644 Binary files a/output/volume_price/volume_return_scatter.png and b/output/volume_price/volume_return_scatter.png differ diff --git a/output/wavelet/wavelet_global_spectrum.png b/output/wavelet/wavelet_global_spectrum.png index e52694e..f1a6839 100644 Binary files a/output/wavelet/wavelet_global_spectrum.png and b/output/wavelet/wavelet_global_spectrum.png differ diff --git a/output/wavelet/wavelet_key_periods.png b/output/wavelet/wavelet_key_periods.png index f5773d3..41464fd 100644 Binary files a/output/wavelet/wavelet_key_periods.png and b/output/wavelet/wavelet_key_periods.png differ diff --git a/output/wavelet/wavelet_scalogram.png b/output/wavelet/wavelet_scalogram.png index e2b366f..6070b55 100644 Binary files a/output/wavelet/wavelet_scalogram.png and b/output/wavelet/wavelet_scalogram.png differ diff --git a/output/综合结论报告.txt b/output/综合结论报告.txt index fa84500..9a2e1dc 100644 --- a/output/综合结论报告.txt +++ b/output/综合结论报告.txt @@ -15,8 +15,23 @@ BTC/USDT 价格规律性分析 — 综合结论报告 ---------------------------------------------------------------------- 模块 得分 强度 发现数 ---------------------------------------------------------------------- +fft 0.00 none 0 +fractal 0.00 none 0 +power_law 0.00 none 0 +wavelet 0.00 none 0 +acf 0.00 none 0 +returns 0.00 none 0 +volatility 0.00 none 0 +hurst 0.00 none 0 +volume_price 0.00 none 0 +time_series 0.00 none 0 +causality 0.00 none 0 +calendar 0.00 none 0 +halving 0.00 none 0 indicators 0.00 none 0 patterns 0.00 none 0 +clustering 0.00 none 0 +anomaly 0.00 none 0 ---------------------------------------------------------------------- ## 强证据规律(可重复、有经济意义): @@ -26,8 +41,23 @@ patterns 0.00 none 0 (无) ## 弱证据/不显著: - * indicators + * fft + * time_series + * clustering * patterns + * indicators + * halving + * calendar + * causality + * volume_price + * fractal + * hurst + * volatility + * returns + * acf + * wavelet + * power_law + * anomaly ====================================================================== 注: 得分基于各模块自报告的统计检验结果。 diff --git a/src/acf_analysis.py b/src/acf_analysis.py index af06b6a..28b47d8 100644 --- a/src/acf_analysis.py +++ b/src/acf_analysis.py @@ -10,6 +10,9 @@ import pandas as pd import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt + +from src.font_config import configure_chinese_font +configure_chinese_font() from statsmodels.tsa.stattools import acf, pacf from statsmodels.stats.diagnostic import acorr_ljungbox from pathlib import Path diff --git a/src/anomaly.py b/src/anomaly.py index c4cb03c..924d590 100644 --- a/src/anomaly.py +++ b/src/anomaly.py @@ -705,9 +705,8 @@ def run_anomaly_analysis( print(f"数据范围: {df.index.min()} ~ {df.index.max()}") print(f"样本数量: {len(df)}") - # 设置中文字体 - plt.rcParams['font.sans-serif'] = ['Arial Unicode MS', 'SimHei', 'DejaVu Sans'] - plt.rcParams['axes.unicode_minus'] = False + from src.font_config import configure_chinese_font + configure_chinese_font() # --- 集成异常检测 --- print("\n>>> [1/5] 执行集成异常检测...") diff --git a/src/calendar_analysis.py b/src/calendar_analysis.py index 667a0cc..6111eb9 100644 --- a/src/calendar_analysis.py +++ b/src/calendar_analysis.py @@ -12,9 +12,8 @@ from pathlib import Path from itertools import combinations from scipy import stats -# 中文显示配置 -plt.rcParams['font.sans-serif'] = ['Arial Unicode MS', 'SimHei', 'DejaVu Sans'] -plt.rcParams['axes.unicode_minus'] = False +from src.font_config import configure_chinese_font +configure_chinese_font() # 星期名称映射(中英文) WEEKDAY_NAMES_CN = {0: '周一', 1: '周二', 2: '周三', 3: '周四', diff --git a/src/causality.py b/src/causality.py index 56b7a95..2c6ed47 100644 --- a/src/causality.py +++ b/src/causality.py @@ -543,9 +543,8 @@ def run_causality_analysis( print(f"因果变量对数: {len(CAUSALITY_PAIRS)}") print(f"总检验次数(含所有滞后): {len(CAUSALITY_PAIRS) * len(TEST_LAGS)}") - # 设置中文字体 - plt.rcParams['font.sans-serif'] = ['Arial Unicode MS', 'SimHei', 'DejaVu Sans'] - plt.rcParams['axes.unicode_minus'] = False + from src.font_config import configure_chinese_font + configure_chinese_font() # --- 日线级 Granger 因果检验 --- print("\n>>> [1/4] 执行日线级 Granger 因果检验...") diff --git a/src/clustering.py b/src/clustering.py index 9b39e9f..8a093fd 100644 --- a/src/clustering.py +++ b/src/clustering.py @@ -632,9 +632,8 @@ def run_clustering_analysis(df: pd.DataFrame, output_dir: "str | Path" = "output output_dir = Path(output_dir) output_dir.mkdir(parents=True, exist_ok=True) - # 设置中文字体(macOS) - plt.rcParams['font.sans-serif'] = ['Arial Unicode MS', 'SimHei', 'DejaVu Sans'] - plt.rcParams['axes.unicode_minus'] = False + from src.font_config import configure_chinese_font + configure_chinese_font() print("=" * 60) print(" BTC 市场状态聚类与马尔可夫链分析") diff --git a/src/fft_analysis.py b/src/fft_analysis.py index 63e371e..f2df843 100644 --- a/src/fft_analysis.py +++ b/src/fft_analysis.py @@ -3,6 +3,9 @@ import matplotlib matplotlib.use("Agg") +from src.font_config import configure_chinese_font +configure_chinese_font() + import numpy as np import pandas as pd import matplotlib.pyplot as plt diff --git a/src/font_config.py b/src/font_config.py new file mode 100644 index 0000000..f4e32a1 --- /dev/null +++ b/src/font_config.py @@ -0,0 +1,60 @@ +""" +统一 matplotlib 中文字体配置。 + +所有绘图模块在创建图表前应调用 configure_chinese_font()。 +""" + +import matplotlib +import matplotlib.pyplot as plt +import matplotlib.font_manager as fm + +_configured = False + +# 按优先级排列的中文字体候选列表 +_CHINESE_FONT_CANDIDATES = [ + 'Noto Sans SC', # Google 思源黑体(最佳渲染质量) + 'Hiragino Sans GB', # macOS 系统自带 + 'STHeiti', # macOS 系统自带 + 'Arial Unicode MS', # macOS/Windows 通用 + 'SimHei', # Windows 黑体 + 'WenQuanYi Micro Hei', # Linux 文泉驿 + 'DejaVu Sans', # 最终回退(不支持中文,但不会崩溃) +] + + +def _find_available_chinese_fonts(): + """检测系统中实际可用的中文字体。""" + available = [] + for font_name in _CHINESE_FONT_CANDIDATES: + try: + path = fm.findfont( + fm.FontProperties(family=font_name), + fallback_to_default=False + ) + if path and 'LastResort' not in path: + available.append(font_name) + except Exception: + continue + return available if available else ['DejaVu Sans'] + + +def configure_chinese_font(): + """ + 配置 matplotlib 使用中文字体。 + + - 自动检测系统可用的中文字体 + - 设置 sans-serif 字体族 + - 修复负号显示问题 + - 仅在首次调用时执行,后续调用为空操作 + """ + global _configured + if _configured: + return + + available = _find_available_chinese_fonts() + + plt.rcParams['font.sans-serif'] = available + plt.rcParams['axes.unicode_minus'] = False + plt.rcParams['font.family'] = 'sans-serif' + + _configured = True diff --git a/src/fractal_analysis.py b/src/fractal_analysis.py index 5fc4dc4..13d33ed 100644 --- a/src/fractal_analysis.py +++ b/src/fractal_analysis.py @@ -13,6 +13,9 @@ import matplotlib matplotlib.use('Agg') +from src.font_config import configure_chinese_font +configure_chinese_font() + import numpy as np import pandas as pd import matplotlib.pyplot as plt diff --git a/src/halving_analysis.py b/src/halving_analysis.py index c6be485..0541ac5 100644 --- a/src/halving_analysis.py +++ b/src/halving_analysis.py @@ -10,9 +10,8 @@ import matplotlib.ticker as mticker from pathlib import Path from scipy import stats -# 中文显示配置 -plt.rcParams['font.sans-serif'] = ['Arial Unicode MS', 'SimHei', 'DejaVu Sans'] -plt.rcParams['axes.unicode_minus'] = False +from src.font_config import configure_chinese_font +configure_chinese_font() # BTC 减半日期(数据范围 2017-2026 内的两次减半) HALVING_DATES = [ diff --git a/src/hurst_analysis.py b/src/hurst_analysis.py index 87e111d..3c00bc2 100644 --- a/src/hurst_analysis.py +++ b/src/hurst_analysis.py @@ -15,6 +15,9 @@ Hurst指数分析模块 import matplotlib matplotlib.use('Agg') +from src.font_config import configure_chinese_font +configure_chinese_font() + import numpy as np import pandas as pd import matplotlib.pyplot as plt diff --git a/src/indicators.py b/src/indicators.py index cd2ef4b..0762820 100644 --- a/src/indicators.py +++ b/src/indicators.py @@ -9,6 +9,9 @@ import matplotlib matplotlib.use('Agg') +from src.font_config import configure_chinese_font +configure_chinese_font() + import numpy as np import pandas as pd import matplotlib.pyplot as plt diff --git a/src/patterns.py b/src/patterns.py index b706226..f63ee71 100644 --- a/src/patterns.py +++ b/src/patterns.py @@ -8,6 +8,9 @@ K线形态识别与统计验证模块 import matplotlib matplotlib.use('Agg') +from src.font_config import configure_chinese_font +configure_chinese_font() + import numpy as np import pandas as pd import matplotlib.pyplot as plt diff --git a/src/power_law_analysis.py b/src/power_law_analysis.py index e83c67f..32b3c0c 100644 --- a/src/power_law_analysis.py +++ b/src/power_law_analysis.py @@ -15,9 +15,8 @@ from scipy.optimize import curve_fit from pathlib import Path from typing import Tuple, Dict -# 中文显示支持 -plt.rcParams['font.sans-serif'] = ['Arial Unicode MS', 'SimHei', 'DejaVu Sans'] -plt.rcParams['axes.unicode_minus'] = False +from src.font_config import configure_chinese_font +configure_chinese_font() def _compute_days_since_start(df: pd.DataFrame) -> np.ndarray: diff --git a/src/returns_analysis.py b/src/returns_analysis.py index f965756..31244e8 100644 --- a/src/returns_analysis.py +++ b/src/returns_analysis.py @@ -446,9 +446,8 @@ def run_returns_analysis(df: pd.DataFrame, output_dir: str = "output/returns"): # --- 生成可视化 --- print("\n>>> 生成可视化图表...") - # 设置中文字体(兼容多系统) - plt.rcParams['font.sans-serif'] = ['Arial Unicode MS', 'SimHei', 'DejaVu Sans'] - plt.rcParams['axes.unicode_minus'] = False + from src.font_config import configure_chinese_font + configure_chinese_font() plot_histogram_vs_normal(daily_returns, output_dir) plot_qq(daily_returns, output_dir) diff --git a/src/time_series.py b/src/time_series.py index 3f20e8d..05e99b9 100644 --- a/src/time_series.py +++ b/src/time_series.py @@ -643,9 +643,8 @@ def run_time_series_analysis(df: pd.DataFrame, output_dir: "str | Path" = "outpu output_dir = Path(output_dir) output_dir.mkdir(parents=True, exist_ok=True) - # 设置中文字体(macOS) - plt.rcParams['font.sans-serif'] = ['Arial Unicode MS', 'SimHei', 'DejaVu Sans'] - plt.rcParams['axes.unicode_minus'] = False + from src.font_config import configure_chinese_font + configure_chinese_font() print("=" * 60) print(" BTC 时间序列预测分析") diff --git a/src/visualization.py b/src/visualization.py index 9dd9f43..8d16e0a 100644 --- a/src/visualization.py +++ b/src/visualization.py @@ -55,11 +55,8 @@ EVIDENCE_COLORS = { def apply_style(): """应用全局matplotlib样式""" plt.rcParams.update(STYLE_CONFIG) - try: - plt.rcParams["font.sans-serif"] = ["Arial Unicode MS", "SimHei", "DejaVu Sans"] - plt.rcParams["axes.unicode_minus"] = False - except Exception: - pass + from src.font_config import configure_chinese_font + configure_chinese_font() def ensure_dir(path): diff --git a/src/volatility_analysis.py b/src/volatility_analysis.py index 6cfdca3..b87f81f 100644 --- a/src/volatility_analysis.py +++ b/src/volatility_analysis.py @@ -584,9 +584,8 @@ def run_volatility_analysis(df: pd.DataFrame, output_dir: str = "output/volatili daily_returns = log_returns(df['close']) print(f"日对数收益率样本数: {len(daily_returns)}") - # 设置中文字体(兼容多系统) - plt.rcParams['font.sans-serif'] = ['Arial Unicode MS', 'SimHei', 'DejaVu Sans'] - plt.rcParams['axes.unicode_minus'] = False + from src.font_config import configure_chinese_font + configure_chinese_font() # 固定随机种子以保证杠杆效应散点图采样可复现 np.random.seed(42) diff --git a/src/volume_price_analysis.py b/src/volume_price_analysis.py index 2afe8cf..d875ea4 100644 --- a/src/volume_price_analysis.py +++ b/src/volume_price_analysis.py @@ -15,9 +15,8 @@ from statsmodels.tsa.stattools import grangercausalitytests from pathlib import Path from typing import Dict, List, Tuple -# 中文显示支持 -plt.rcParams['font.sans-serif'] = ['Arial Unicode MS', 'SimHei', 'DejaVu Sans'] -plt.rcParams['axes.unicode_minus'] = False +from src.font_config import configure_chinese_font +configure_chinese_font() # ============================================================================= diff --git a/src/wavelet_analysis.py b/src/wavelet_analysis.py index 0795a6d..c038e8e 100644 --- a/src/wavelet_analysis.py +++ b/src/wavelet_analysis.py @@ -3,6 +3,9 @@ import matplotlib matplotlib.use('Agg') +from src.font_config import configure_chinese_font +configure_chinese_font() + import numpy as np import pandas as pd import pywt