docs: README.md 改为简体中文

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-02-04 01:09:33 +08:00
parent d480712b40
commit 7c538ec95c

176
README.md
View File

@@ -1,47 +1,47 @@
# BTC/USDT Price Analysis
# BTC/USDT 价格分析框架
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](LICENSE)
[![Python 3.10+](https://img.shields.io/badge/Python-3.10%2B-blue.svg)](https://www.python.org/)
A comprehensive quantitative analysis framework for BTC/USDT price dynamics, covering 25 analytical dimensions from statistical distributions to fractal geometry. The framework processes multi-timeframe Binance kline data (1-minute to monthly) spanning 2017-08 to 2026-02, producing reproducible research-grade visualizations and statistical reports.
一个全面的 BTC/USDT 价格量化分析框架,涵盖 25 个分析维度,从统计分布到分形几何。框架处理 Binance 多时间粒度 K 线数据1 分钟至月线),时间跨度 2017-08 2026-02,生成可复现的研究级可视化图表和统计报告。
## Features
## 特性
- **Multi-timeframe data pipeline** — 15 granularities from 1m to 1M, unified loader with validation
- **25 analysis modules** — each module runs independently; single-module failure does not block others
- **Statistical rigor** — train/validation splits, multiple hypothesis testing corrections, bootstrap confidence intervals
- **Publication-ready output** — 53 charts with Chinese font support, plus a 1300-line Markdown research report
- **Modular architecture** — run all modules or cherry-pick via CLI flags
- **多时间粒度数据管道** — 15 种粒度(1m ~ 1M),统一加载器,含数据校验
- **25 个分析模块** — 各模块独立运行,单模块失败不影响其余模块
- **统计严谨性** — 训练/验证集划分、多重假设检验校正、Bootstrap 置信区间
- **出版级输出** — 53 张图表(支持中文字体)+ 1300 行 Markdown 研究报告
- **模块化架构** — 可一键运行全部模块,也可通过 CLI 参数选择指定模块
## Project Structure
## 项目结构
```
btc_price_anany/
├── main.py # CLI entry point
├── requirements.txt # Python dependencies
├── LICENSE # MIT License
├── data/ # 15 BTC/USDT kline CSVs (1m ~ 1M)
├── src/ # 30 analysis & utility modules
│ ├── data_loader.py # Data loading & validation
│ ├── preprocessing.py # Derived feature engineering
│ ├── font_config.py # Chinese font rendering
│ ├── visualization.py # Summary dashboard generation
│ └── ... # 26 analysis modules
├── output/ # Generated charts (53 PNGs)
├── main.py # CLI 入口
├── requirements.txt # Python 依赖
├── LICENSE # MIT 许可证
├── data/ # 15 BTC/USDT K线 CSV1m ~ 1M
├── src/ # 30 个分析与工具模块
│ ├── data_loader.py # 数据加载与校验
│ ├── preprocessing.py # 衍生特征工程
│ ├── font_config.py # 中文字体渲染
│ ├── visualization.py # 综合仪表盘生成
│ └── ... # 26 个分析模块
├── output/ # 生成的图表53 张 PNG
├── docs/
│ └── REPORT.md # Full research report with findings
│ └── REPORT.md # 完整研究报告
└── tests/
└── test_hurst_15scales.py # Hurst exponent multi-scale test
└── test_hurst_15scales.py # Hurst 指数多尺度测试
```
## Quick Start
## 快速开始
### Requirements
### 环境要求
- Python 3.10+
- ~1 GB disk for kline data
- 1 GB 磁盘空间K 线数据)
### Installation
### 安装
```bash
git clone https://github.com/riba2534/btc_price_anany.git
@@ -49,85 +49,85 @@ cd btc_price_anany
pip install -r requirements.txt
```
### Usage
### 使用
```bash
# Run all 25 analysis modules
# 运行全部 25 个分析模块
python main.py
# List available modules
# 查看可用模块列表
python main.py --list
# Run specific modules
# 运行指定模块
python main.py --modules fft wavelet hurst
# Limit date range
# 限定日期范围
python main.py --start 2020-01-01 --end 2025-12-31
```
## Data
## 数据说明
| File | Timeframe | Rows (approx.) |
|------|-----------|-----------------|
| `btcusdt_1m.csv` | 1 minute | ~4,500,000 |
| `btcusdt_3m.csv` | 3 minutes | ~1,500,000 |
| `btcusdt_5m.csv` | 5 minutes | ~900,000 |
| `btcusdt_15m.csv` | 15 minutes | ~300,000 |
| `btcusdt_30m.csv` | 30 minutes | ~150,000 |
| `btcusdt_1h.csv` | 1 hour | ~75,000 |
| `btcusdt_2h.csv` | 2 hours | ~37,000 |
| `btcusdt_4h.csv` | 4 hours | ~19,000 |
| `btcusdt_6h.csv` | 6 hours | ~12,500 |
| `btcusdt_8h.csv` | 8 hours | ~9,500 |
| `btcusdt_12h.csv` | 12 hours | ~6,300 |
| `btcusdt_1d.csv` | 1 day | ~3,100 |
| `btcusdt_3d.csv` | 3 days | ~1,000 |
| `btcusdt_1w.csv` | 1 week | ~450 |
| `btcusdt_1mo.csv` | 1 month | ~100 |
| 文件 | 时间粒度 | 行数(约) |
|------|---------|-----------|
| `btcusdt_1m.csv` | 1 分钟 | ~4,500,000 |
| `btcusdt_3m.csv` | 3 分钟 | ~1,500,000 |
| `btcusdt_5m.csv` | 5 分钟 | ~900,000 |
| `btcusdt_15m.csv` | 15 分钟 | ~300,000 |
| `btcusdt_30m.csv` | 30 分钟 | ~150,000 |
| `btcusdt_1h.csv` | 1 小时 | ~75,000 |
| `btcusdt_2h.csv` | 2 小时 | ~37,000 |
| `btcusdt_4h.csv` | 4 小时 | ~19,000 |
| `btcusdt_6h.csv` | 6 小时 | ~12,500 |
| `btcusdt_8h.csv` | 8 小时 | ~9,500 |
| `btcusdt_12h.csv` | 12 小时 | ~6,300 |
| `btcusdt_1d.csv` | 1 | ~3,100 |
| `btcusdt_3d.csv` | 3 | ~1,000 |
| `btcusdt_1w.csv` | 1 | ~450 |
| `btcusdt_1mo.csv` | 1 | ~100 |
All data sourced from Binance public API, covering 2017-08 to 2026-02.
全部数据来源于 Binance 公开 API时间范围 2017-08 2026-02
## Analysis Modules
## 分析模块
| Module | Description |
|--------|-------------|
| `fft` | FFT power spectrum, multi-timeframe spectral analysis, bandpass filtering |
| `wavelet` | Continuous wavelet transform scalogram, global spectrum, key period tracking |
| `acf` | ACF/PACF grid analysis for autocorrelation structure |
| `returns` | Return distribution fitting, QQ plots, multi-scale moment analysis |
| `volatility` | Volatility clustering, GARCH modeling, leverage effect quantification |
| `hurst` | R/S and DFA Hurst exponent estimation, rolling window analysis |
| `fractal` | Box-counting dimension, Monte Carlo benchmarking, self-similarity tests |
| `power_law` | Log-log regression, power-law growth corridor, model comparison |
| `volume_price` | Volume-return scatter analysis, OBV divergence detection |
| `calendar` | Weekday, month, hour, and quarter-boundary effects |
| `halving` | Halving cycle analysis with normalized trajectory comparison |
| `indicators` | Technical indicator IC testing with train/validation split |
| `patterns` | K-line pattern recognition with forward-return validation |
| `clustering` | Market regime clustering (K-Means, GMM) with transition matrices |
| `time_series` | ARIMA, Prophet, LSTM forecasting with direction accuracy |
| `causality` | Granger causality testing across volume and price features |
| `anomaly` | Anomaly detection with precursor feature analysis |
| `microstructure` | Market microstructure: spreads, Kyle's lambda, VPIN |
| `intraday` | Intraday session patterns and volume heatmaps |
| `scaling` | Statistical scaling laws and kurtosis decay |
| `multiscale_vol` | HAR volatility, jump detection, higher moment analysis |
| `entropy` | Sample entropy and permutation entropy across scales |
| `extreme` | Extreme value theory: Hill estimator, VaR backtesting |
| `cross_tf` | Cross-timeframe correlation and lead-lag analysis |
| `momentum_rev` | Momentum vs mean-reversion: variance ratios, OU half-life |
| 模块 | 说明 |
|------|------|
| `fft` | FFT 功率谱、多时间粒度频谱分析、带通滤波 |
| `wavelet` | 连续小波变换时频图、全局谱、关键周期追踪 |
| `acf` | ACF/PACF 网格分析,自相关结构识别 |
| `returns` | 收益率分布拟合、QQ 图、多尺度矩分析 |
| `volatility` | 波动率聚集、GARCH 建模、杠杆效应量化 |
| `hurst` | R/S DFA Hurst 指数估计、滚动窗口分析 |
| `fractal` | 盒计数维度、Monte Carlo 基准、自相似性检验 |
| `power_law` | 双对数回归、幂律增长通道、模型比较 |
| `volume_price` | 量价散点分析、OBV 背离检测 |
| `calendar` | 星期、月份、小时、季度边界效应 |
| `halving` | 减半周期分析与归一化轨迹对比 |
| `indicators` | 技术指标 IC 检验(训练/验证集划分) |
| `patterns` | K 线形态识别与前瞻收益验证 |
| `clustering` | 市场状态聚类(K-MeansGMM)与转移矩阵 |
| `time_series` | ARIMAProphetLSTM 预测与方向准确率 |
| `causality` | 量价特征间 Granger 因果检验 |
| `anomaly` | 异常检测与前兆特征分析 |
| `microstructure` | 市场微观结构:价差、Kyle's lambdaVPIN |
| `intraday` | 日内交易时段模式与成交量热力图 |
| `scaling` | 统计标度律与峰度衰减 |
| `multiscale_vol` | HAR 波动率、跳跃检测、高阶矩分析 |
| `entropy` | 样本熵与排列熵的多尺度分析 |
| `extreme` | 极端值理论Hill 估计量、VaR 回测 |
| `cross_tf` | 跨时间粒度相关性与领先滞后分析 |
| `momentum_rev` | 动量 vs 均值回归方差比率、OU 半衰期 |
## Key Findings
## 核心发现
The full analysis report is available at [`docs/REPORT.md`](docs/REPORT.md). Major conclusions include:
完整分析报告见 [`docs/REPORT.md`](docs/REPORT.md),主要结论包括:
- **Non-Gaussian returns**: BTC daily returns exhibit significant fat tails (kurtosis ~10) and are best fit by Student-t distributions, not Gaussian
- **Volatility clustering**: Strong GARCH effects with long memory (d ≈ 0.4), confirming volatility persistence across time scales
- **Hurst exponent H ≈ 0.55**: Weak but statistically significant long-range dependence, transitioning from trending (short-term) to mean-reverting (long-term)
- **Fractal dimension D ≈ 1.4**: Price series is rougher than Brownian motion, exhibiting multi-fractal characteristics
- **Halving cycle impact**: Statistically significant post-halving bull runs with diminishing returns per cycle
- **Calendar effects**: Weak but detectable weekday and monthly seasonality; no exploitable intraday patterns survive transaction costs
- **非高斯收益率**BTC 日收益率呈现显著厚尾(峰度 ~10Student-t 分布拟合最优,而非高斯分布
- **波动率聚集**:强 GARCH 效应具有长记忆特征d ≈ 0.4),波动率持续性跨时间尺度成立
- **Hurst 指数 H ≈ 0.55**:弱但统计显著的长程依赖,短期趋势性向长期均值回归过渡
- **分形维度 D ≈ 1.4**:价格序列比布朗运动更粗糙,呈现多重分形特征
- **减半周期效应**:减半后牛市统计显著,但每轮周期收益递减
- **日历效应**:可检测到微弱的星期和月度季节性;日内模式在扣除交易成本后不具可利用性
## License
## 许可证
This project is licensed under the [MIT License](LICENSE).
本项目基于 [MIT 许可证](LICENSE) 开源。