Files
btc_price_anany/output/综合结论报告.txt
riba2534 704cc2267d Fix Chinese font rendering in all chart outputs
- Add src/font_config.py: centralized font detection that auto-selects
  from Noto Sans SC > Hiragino Sans GB > STHeiti > Arial Unicode MS
- Replace hardcoded font lists in all 18 modules with unified config
- Add .gitignore for __pycache__, .DS_Store, venv, etc.
- Regenerate all 70 charts with correct Chinese rendering

Previously, 7 modules (fft, wavelet, acf, fractal, hurst, indicators,
patterns) had no Chinese font config at all, causing □□□ rendering.
The remaining 11 modules used a hardcoded fallback list that didn't
prioritize the best available system font.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-03 11:21:01 +08:00

65 lines
2.4 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

======================================================================
BTC/USDT 价格规律性分析 — 综合结论报告
======================================================================
"真正有规律" 判定标准(必须同时满足):
1. FDR校正后 p < 0.05
2. 排列检验 p < 0.01(如适用)
3. 测试集上效果方向一致且显著
4. >80% bootstrap子样本中成立如适用
5. Cohen's d > 0.2 或经济意义显著
6. 有合理的经济/市场直觉解释
----------------------------------------------------------------------
模块 得分 强度 发现数
----------------------------------------------------------------------
fft 0.00 none 0
fractal 0.00 none 0
power_law 0.00 none 0
wavelet 0.00 none 0
acf 0.00 none 0
returns 0.00 none 0
volatility 0.00 none 0
hurst 0.00 none 0
volume_price 0.00 none 0
time_series 0.00 none 0
causality 0.00 none 0
calendar 0.00 none 0
halving 0.00 none 0
indicators 0.00 none 0
patterns 0.00 none 0
clustering 0.00 none 0
anomaly 0.00 none 0
----------------------------------------------------------------------
## 强证据规律(可重复、有经济意义):
(无)
## 中等证据规律(统计显著但效果有限):
(无)
## 弱证据/不显著:
* fft
* time_series
* clustering
* patterns
* indicators
* halving
* calendar
* causality
* volume_price
* fractal
* hurst
* volatility
* returns
* acf
* wavelet
* power_law
* anomaly
======================================================================
注: 得分基于各模块自报告的统计检验结果。
具体参数和图表请参见各子目录的输出。
======================================================================