Files
btc_price_anany/requirements.txt
riba2534 f4c4408708 Add comprehensive BTC/USDT price analysis framework with 17 modules
Complete statistical analysis pipeline covering:
- FFT spectral analysis, wavelet CWT, ACF/PACF autocorrelation
- Returns distribution (fat tails, kurtosis=15.65), GARCH volatility modeling
- Hurst exponent (H=0.593), fractal dimension, power law corridor
- Volume-price causality (Granger), calendar effects, halving cycle analysis
- Technical indicator validation (0/21 pass FDR), candlestick pattern testing
- Market state clustering (K-Means/GMM), Markov chain transitions
- Time series forecasting (ARIMA/Prophet/LSTM benchmarks)
- Anomaly detection ensemble (IF+LOF+COPOD, AUC=0.9935)

Key finding: volatility is predictable (GARCH persistence=0.973),
but price direction is statistically indistinguishable from random walk.

Includes REPORT.md with 16-section analysis report and future projections,
70+ charts in output/, and all source modules in src/.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-03 10:29:54 +08:00

18 lines
285 B
Plaintext

pandas>=2.0
numpy>=1.24
scipy>=1.11
matplotlib>=3.7
seaborn>=0.12
statsmodels>=0.14
PyWavelets>=1.4
arch>=6.0
scikit-learn>=1.3
# pandas-ta 已移除,技术指标在 indicators.py 中手动实现
hdbscan>=0.8
nolds>=0.5.2
prophet>=1.1
torch>=2.0
pyod>=1.1
plotly>=5.15
pmdarima>=2.0