- Add src/font_config.py: centralized font detection that auto-selects from Noto Sans SC > Hiragino Sans GB > STHeiti > Arial Unicode MS - Replace hardcoded font lists in all 18 modules with unified config - Add .gitignore for __pycache__, .DS_Store, venv, etc. - Regenerate all 70 charts with correct Chinese rendering Previously, 7 modules (fft, wavelet, acf, fractal, hurst, indicators, patterns) had no Chinese font config at all, causing □□□ rendering. The remaining 11 modules used a hardcoded fallback list that didn't prioritize the best available system font. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
65 lines
2.4 KiB
Plaintext
65 lines
2.4 KiB
Plaintext
======================================================================
|
||
BTC/USDT 价格规律性分析 — 综合结论报告
|
||
======================================================================
|
||
|
||
|
||
"真正有规律" 判定标准(必须同时满足):
|
||
1. FDR校正后 p < 0.05
|
||
2. 排列检验 p < 0.01(如适用)
|
||
3. 测试集上效果方向一致且显著
|
||
4. >80% bootstrap子样本中成立(如适用)
|
||
5. Cohen's d > 0.2 或经济意义显著
|
||
6. 有合理的经济/市场直觉解释
|
||
|
||
|
||
----------------------------------------------------------------------
|
||
模块 得分 强度 发现数
|
||
----------------------------------------------------------------------
|
||
fft 0.00 none 0
|
||
fractal 0.00 none 0
|
||
power_law 0.00 none 0
|
||
wavelet 0.00 none 0
|
||
acf 0.00 none 0
|
||
returns 0.00 none 0
|
||
volatility 0.00 none 0
|
||
hurst 0.00 none 0
|
||
volume_price 0.00 none 0
|
||
time_series 0.00 none 0
|
||
causality 0.00 none 0
|
||
calendar 0.00 none 0
|
||
halving 0.00 none 0
|
||
indicators 0.00 none 0
|
||
patterns 0.00 none 0
|
||
clustering 0.00 none 0
|
||
anomaly 0.00 none 0
|
||
----------------------------------------------------------------------
|
||
|
||
## 强证据规律(可重复、有经济意义):
|
||
(无)
|
||
|
||
## 中等证据规律(统计显著但效果有限):
|
||
(无)
|
||
|
||
## 弱证据/不显著:
|
||
* fft
|
||
* time_series
|
||
* clustering
|
||
* patterns
|
||
* indicators
|
||
* halving
|
||
* calendar
|
||
* causality
|
||
* volume_price
|
||
* fractal
|
||
* hurst
|
||
* volatility
|
||
* returns
|
||
* acf
|
||
* wavelet
|
||
* power_law
|
||
* anomaly
|
||
|
||
======================================================================
|
||
注: 得分基于各模块自报告的统计检验结果。
|
||
具体参数和图表请参见各子目录的输出。
|
||
====================================================================== |