Complete statistical analysis pipeline covering: - FFT spectral analysis, wavelet CWT, ACF/PACF autocorrelation - Returns distribution (fat tails, kurtosis=15.65), GARCH volatility modeling - Hurst exponent (H=0.593), fractal dimension, power law corridor - Volume-price causality (Granger), calendar effects, halving cycle analysis - Technical indicator validation (0/21 pass FDR), candlestick pattern testing - Market state clustering (K-Means/GMM), Markov chain transitions - Time series forecasting (ARIMA/Prophet/LSTM benchmarks) - Anomaly detection ensemble (IF+LOF+COPOD, AUC=0.9935) Key finding: volatility is predictable (GARCH persistence=0.973), but price direction is statistically indistinguishable from random walk. Includes REPORT.md with 16-section analysis report and future projections, 70+ charts in output/, and all source modules in src/. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
18 lines
285 B
Plaintext
18 lines
285 B
Plaintext
pandas>=2.0
|
|
numpy>=1.24
|
|
scipy>=1.11
|
|
matplotlib>=3.7
|
|
seaborn>=0.12
|
|
statsmodels>=0.14
|
|
PyWavelets>=1.4
|
|
arch>=6.0
|
|
scikit-learn>=1.3
|
|
# pandas-ta 已移除,技术指标在 indicators.py 中手动实现
|
|
hdbscan>=0.8
|
|
nolds>=0.5.2
|
|
prophet>=1.1
|
|
torch>=2.0
|
|
pyod>=1.1
|
|
plotly>=5.15
|
|
pmdarima>=2.0
|