fix: 全面修复代码质量和报告准确性问题

代码修复 (16 个模块):
- GARCH 模型统一改用 t 分布 + 收敛检查 (returns/volatility/anomaly)
- KS 检验替换为 Lilliefors 检验 (returns)
- 修复数据泄漏: StratifiedKFold→TimeSeriesSplit, scaler 逐折 fit (anomaly)
- 前兆标签 shift(-1) 预测次日异常 (anomaly)
- PSD 归一化加入采样频率和单边谱×2 (fft)
- AR(1) 红噪声基线经验缩放 (fft)
- 盒计数法独立 x/y 归一化, MF-DFA q=0 (fractal)
- ADF 平稳性检验 + 移除双重 Bonferroni (causality)
- R/S Hurst 添加 R² 拟合优度 (hurst)
- Prophet 递推预测避免信息泄露 (time_series)
- IC 计算过滤零信号, 中性形态 hit_rate=NaN (indicators/patterns)
- 聚类阈值自适应化 (clustering)
- 日历效应前后半段稳健性检查 (calendar)
- 证据评分标准文本与代码对齐 (visualization)
- 核心管道 NaN/空值防护 (data_loader/preprocessing/main)

报告修复 (docs/REPORT.md, 15 处):
- 标度指数 H_scaling 与 Hurst 指数消歧
- GBM 6 个月概率锥数值重算
- CLT 限定、减半措辞弱化、情景概率逻辑修正
- GPD 形状参数解读修正、异常 AUC 证据降级

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-02-04 01:07:50 +08:00
parent 79ff6dcccb
commit d480712b40
18 changed files with 299 additions and 168 deletions

View File

@@ -46,7 +46,7 @@
## 1. 数据概览 ## 1. 数据概览
![价格概览](output/price_overview.png) ![价格概览](../output/price_overview.png)
| 指标 | 值 | | 指标 | 值 |
|------|-----| |------|-----|
@@ -89,9 +89,9 @@
4σ 极端事件的出现频率是正态分布预测的近 87 倍,证明 BTC 收益率具有显著的厚尾特征。 4σ 极端事件的出现频率是正态分布预测的近 87 倍,证明 BTC 收益率具有显著的厚尾特征。
![收益率直方图 vs 正态](output/returns/returns_histogram_vs_normal.png) ![收益率直方图 vs 正态](../output/returns/returns_histogram_vs_normal.png)
![QQ图](output/returns/returns_qq_plot.png) ![QQ图](../output/returns/returns_qq_plot.png)
### 2.3 多时间尺度分布 ### 2.3 多时间尺度分布
@@ -102,9 +102,9 @@
| 1d | 3,090 | 0.000935 | 0.0361 | 15.65 | -0.97 | | 1d | 3,090 | 0.000935 | 0.0361 | 15.65 | -0.97 |
| 1w | 434 | 0.006812 | 0.0959 | 2.08 | -0.44 | | 1w | 434 | 0.006812 | 0.0959 | 2.08 | -0.44 |
**关键发现**: 峰度随时间尺度增大从 35.88 → 2.08 单调递减,趋向正态分布,符合中心极限定理的聚合正态性 **关键发现**: 峰度随时间尺度增大从 35.88 → 2.08 单调递减,趋向正态分布。这一趋势与聚合正态性一致,但由于 BTC 收益率存在显著的自相关(第 3 章)和波动率聚集,严格的 CLT 独立同分布前提不满足,收敛速度可能慢于独立序列
![多时间尺度分布](output/returns/multi_timeframe_distributions.png) ![多时间尺度分布](../output/returns/multi_timeframe_distributions.png)
--- ---
@@ -121,7 +121,7 @@
持续性 0.973 接近 1意味着波动率冲击衰减极慢 — 一次大幅波动的影响需要数十天才能消散。 持续性 0.973 接近 1意味着波动率冲击衰减极慢 — 一次大幅波动的影响需要数十天才能消散。
![GARCH条件波动率](output/returns/garch_conditional_volatility.png) ![GARCH条件波动率](../output/returns/garch_conditional_volatility.png)
### 3.2 波动率 ACF 幂律衰减 ### 3.2 波动率 ACF 幂律衰减
@@ -133,9 +133,9 @@
| p 值 | 5.82e-25 | | p 值 | 5.82e-25 |
| 长记忆性判断 (0 < d < 1) | **是** | | 长记忆性判断 (0 < d < 1) | **是** |
绝对收益率的自相关以幂律速度缓慢衰减证实波动率具有长记忆特征标准 GARCH 模型的指数衰减假设可能不足以完整刻画这一特征 绝对收益率的自相关以幂律速度缓慢衰减支持波动率具有长记忆特征线性拟合d=0.635和非线性拟合d=0.345差异较大这是因为线性拟合在对数空间中对远端滞后阶赋予了更高权重而非线性拟合更好地捕捉了短程衰减特征。FIGARCH 建模建议参考非线性拟合值 d0.34标准 GARCH 模型的指数衰减假设不足以完整刻画这一特征
![ACF幂律衰减](output/volatility/acf_power_law_fit.png) ![ACF幂律衰减](../output/volatility/acf_power_law_fit.png)
### 3.3 ACF 分析证据 ### 3.3 ACF 分析证据
@@ -148,11 +148,11 @@
绝对收益率前 88 ACF 均显著100 阶中的 88 成交量全部 100 阶均显著ACF(1) = 0.892证明极强的非线性依赖和波动聚集 绝对收益率前 88 ACF 均显著100 阶中的 88 成交量全部 100 阶均显著ACF(1) = 0.892证明极强的非线性依赖和波动聚集
![ACF分析](output/acf/acf_grid.png) ![ACF分析](../output/acf/acf_grid.png)
![PACF分析](output/acf/pacf_grid.png) ![PACF分析](../output/acf/pacf_grid.png)
![GARCH模型对比](output/volatility/garch_model_comparison.png) ![GARCH模型对比](../output/volatility/garch_model_comparison.png)
### 3.4 杠杆效应 ### 3.4 杠杆效应
@@ -164,7 +164,7 @@
仅在 5 天窗口内观测到弱杠杆效应下跌后波动率上升效应量极小r=-0.062),比传统股市弱得多。 仅在 5 天窗口内观测到弱杠杆效应下跌后波动率上升效应量极小r=-0.062),比传统股市弱得多。
![杠杆效应](output/volatility/leverage_effect_scatter.png) ![杠杆效应](../output/volatility/leverage_effect_scatter.png)
--- ---
@@ -193,11 +193,11 @@
7 天周期分量解释了最多的方差14.9%但总体所有周期分量加起来仅解释 ~22% 的方差 78% 的波动无法用周期性解释 7 天周期分量解释了最多的方差14.9%但总体所有周期分量加起来仅解释 ~22% 的方差 78% 的波动无法用周期性解释
![FFT功率谱](output/fft/fft_power_spectrum.png) ![FFT功率谱](../output/fft/fft_power_spectrum.png)
![多时间框架FFT](output/fft/fft_multi_timeframe.png) ![多时间框架FFT](../output/fft/fft_multi_timeframe.png)
![带通滤波分量](output/fft/fft_bandpass_components.png) ![带通滤波分量](../output/fft/fft_bandpass_components.png)
### 4.2 小波变换 (CWT) ### 4.2 小波变换 (CWT)
@@ -215,11 +215,11 @@
这些周期虽然通过了 95% 显著性检验但功率/阈值比值仅 1.01~1.15x属于**边际显著**实际应用价值有限 这些周期虽然通过了 95% 显著性检验但功率/阈值比值仅 1.01~1.15x属于**边际显著**实际应用价值有限
![小波时频图](output/wavelet/wavelet_scalogram.png) ![小波时频图](../output/wavelet/wavelet_scalogram.png)
![全局小波谱](output/wavelet/wavelet_global_spectrum.png) ![全局小波谱](../output/wavelet/wavelet_global_spectrum.png)
![关键周期追踪](output/wavelet/wavelet_key_periods.png) ![关键周期追踪](../output/wavelet/wavelet_key_periods.png)
--- ---
@@ -261,11 +261,11 @@ Hurst 指数随时间尺度增大而增大周线级别H=0.67)呈现更
几乎所有时间窗口都显示弱趋势性没有任何窗口进入均值回归状态 几乎所有时间窗口都显示弱趋势性没有任何窗口进入均值回归状态
![R/S对数-对数图](output/hurst/hurst_rs_loglog.png) ![R/S对数-对数图](../output/hurst/hurst_rs_loglog.png)
![滚动Hurst](output/hurst/hurst_rolling.png) ![滚动Hurst](../output/hurst/hurst_rolling.png)
![多时间框架Hurst](output/hurst/hurst_multi_timeframe.png) ![多时间框架Hurst](../output/hurst/hurst_multi_timeframe.png)
### 5.2 分形维度 ### 5.2 分形维度
@@ -280,11 +280,11 @@ BTC 的分形维数 D=1.34 低于随机游走的 D=1.38(序列更光滑),
**多尺度自相似性**峰度从尺度 1 15.65 降至尺度 50 -0.25大尺度下趋于正态自相似性有限 **多尺度自相似性**峰度从尺度 1 15.65 降至尺度 50 -0.25大尺度下趋于正态自相似性有限
![盒计数分形维度](output/fractal/fractal_box_counting.png) ![盒计数分形维度](../output/fractal/fractal_box_counting.png)
![蒙特卡洛对比](output/fractal/fractal_monte_carlo.png) ![蒙特卡洛对比](../output/fractal/fractal_monte_carlo.png)
![自相似性分析](output/fractal/fractal_self_similarity.png) ![自相似性分析](../output/fractal/fractal_self_similarity.png)
--- ---
@@ -318,11 +318,11 @@ BTC 的分形维数 D=1.34 低于随机游走的 D=1.38(序列更光滑),
AIC/BIC 均支持指数增长模型优于幂律模型差值 493说明 BTC 的长期增长更接近指数而非幂律 AIC/BIC 均支持指数增长模型优于幂律模型差值 493说明 BTC 的长期增长更接近指数而非幂律
![对数-对数回归](output/power_law/power_law_loglog_regression.png) ![对数-对数回归](../output/power_law/power_law_loglog_regression.png)
![幂律走廊](output/power_law/power_law_corridor.png) ![幂律走廊](../output/power_law/power_law_corridor.png)
![模型对比](output/power_law/power_law_model_comparison.png) ![模型对比](../output/power_law/power_law_model_comparison.png)
--- ---
@@ -337,7 +337,7 @@ AIC/BIC 均支持指数增长模型优于幂律模型(差值 493说明 B
成交量放大伴随大幅波动中等正相关且极其显著 成交量放大伴随大幅波动中等正相关且极其显著
![量价散点图](output/volume_price/volume_return_scatter.png) ![量价散点图](../output/volume_price/volume_return_scatter.png)
### 7.2 Granger 因果检验 ### 7.2 Granger 因果检验
@@ -356,9 +356,9 @@ AIC/BIC 均支持指数增长模型优于幂律模型(差值 493说明 B
**核心发现**: 因果关系是**单向** 波动率/收益率 Granger-cause 成交量和 taker_buy_ratio反向不成立这意味着成交量是价格波动的结果而非原因 **核心发现**: 因果关系是**单向** 波动率/收益率 Granger-cause 成交量和 taker_buy_ratio反向不成立这意味着成交量是价格波动的结果而非原因
![Granger p值热力图](output/causality/granger_pvalue_heatmap.png) ![Granger p值热力图](../output/causality/granger_pvalue_heatmap.png)
![因果网络图](output/causality/granger_causal_network.png) ![因果网络图](../output/causality/granger_causal_network.png)
### 7.3 跨时间尺度因果 ### 7.3 跨时间尺度因果
@@ -374,7 +374,7 @@ AIC/BIC 均支持指数增长模型优于幂律模型(差值 493说明 B
检测到 82 个价量背离信号49 个顶背离 + 33 个底背离)。 检测到 82 个价量背离信号49 个顶背离 + 33 个底背离)。
![OBV背离](output/volume_price/obv_divergence.png) ![OBV背离](../output/volume_price/obv_divergence.png)
--- ---
@@ -396,7 +396,7 @@ AIC/BIC 均支持指数增长模型优于幂律模型(差值 493说明 B
Bonferroni 校正后的 21 Mann-Whitney U 两两比较均不显著 Bonferroni 校正后的 21 Mann-Whitney U 两两比较均不显著
![星期效应](output/calendar/calendar_weekday_effect.png) ![星期效应](../output/calendar/calendar_weekday_effect.png)
### 8.2 月份效应 ### 8.2 月份效应
@@ -404,7 +404,7 @@ Bonferroni 校正后的 21 对 Mann-Whitney U 两两比较均不显著。
10 月份均值收益率最高+0.501%8 月最低-0.123% 66 对两两比较经 Bonferroni 校正后无一显著 10 月份均值收益率最高+0.501%8 月最低-0.123% 66 对两两比较经 Bonferroni 校正后无一显著
![月份效应](output/calendar/calendar_month_effect.png) ![月份效应](../output/calendar/calendar_month_effect.png)
### 8.3 小时效应 ### 8.3 小时效应
@@ -413,7 +413,7 @@ Bonferroni 校正后的 21 对 Mann-Whitney U 两两比较均不显著。
日内小时效应在收益率和成交量上均显著存在14:00 UTC 成交量最高3,805 BTC03:00-05:00 UTC 成交量最低~1,980 BTC)。 日内小时效应在收益率和成交量上均显著存在14:00 UTC 成交量最高3,805 BTC03:00-05:00 UTC 成交量最低~1,980 BTC)。
![小时效应](output/calendar/calendar_hour_effect.png) ![小时效应](../output/calendar/calendar_hour_effect.png)
### 8.4 季度 & 月初月末效应 ### 8.4 季度 & 月初月末效应
@@ -422,7 +422,7 @@ Bonferroni 校正后的 21 对 Mann-Whitney U 两两比较均不显著。
| 季度 Kruskal-Wallis | 1.15 | 0.765 | 不显著 | | 季度 Kruskal-Wallis | 1.15 | 0.765 | 不显著 |
| 月初 vs 月末 Mann-Whitney | 134,569 | 0.236 | 不显著 | | 月初 vs 月末 Mann-Whitney | 134,569 | 0.236 | 不显著 |
![季度和月初月末效应](output/calendar/calendar_quarter_boundary_effect.png) ![季度和月初月末效应](../output/calendar/calendar_quarter_boundary_effect.png)
### 日历效应总结 ### 日历效应总结
@@ -484,13 +484,13 @@ Bonferroni 校正后的 21 对 Mann-Whitney U 两两比较均不显著。
两个周期的归一化价格轨迹高度相关r=0.81),但仅 2 个样本无法做出因果推断 两个周期的归一化价格轨迹高度相关r=0.81),但仅 2 个样本无法做出因果推断
![归一化轨迹叠加](output/halving/halving_normalized_trajectories.png) ![归一化轨迹叠加](../output/halving/halving_normalized_trajectories.png)
![减半前后收益率](output/halving/halving_pre_post_returns.png) ![减半前后收益率](../output/halving/halving_pre_post_returns.png)
![累计收益率](output/halving/halving_cumulative_returns.png) ![累计收益率](../output/halving/halving_cumulative_returns.png)
![综合摘要](output/halving/halving_combined_summary.png) ![综合摘要](../output/halving/halving_combined_summary.png)
--- ---
@@ -523,11 +523,11 @@ Bonferroni 校正后的 21 对 Mann-Whitney U 两两比较均不显著。
Top-10 IC 中有 9/10 方向一致1 SMA_20_100发生方向翻转但所有 IC 值均在 [-0.10, +0.05] 范围内效果量极小 Top-10 IC 中有 9/10 方向一致1 SMA_20_100发生方向翻转但所有 IC 值均在 [-0.10, +0.05] 范围内效果量极小
![IC分布-训练集](output/indicators/ic_distribution_train.png) ![IC分布-训练集](../output/indicators/ic_distribution_train.png)
![IC分布-验证集](output/indicators/ic_distribution_val.png) ![IC分布-验证集](../output/indicators/ic_distribution_val.png)
![p值热力图-训练集](output/indicators/pvalue_heatmap_train.png) ![p值热力图-训练集](../output/indicators/pvalue_heatmap_train.png)
--- ---
@@ -570,11 +570,11 @@ Top-10 IC 中有 9/10 方向一致1 个SMA_20_100发生方向翻转。
大部分形态的命中率在验证集上出现衰减说明训练集中的表现可能是过拟合 大部分形态的命中率在验证集上出现衰减说明训练集中的表现可能是过拟合
![形态出现频率](output/patterns/pattern_counts_train.png) ![形态出现频率](../output/patterns/pattern_counts_train.png)
![形态前瞻收益率](output/patterns/pattern_forward_returns_train.png) ![形态前瞻收益率](../output/patterns/pattern_forward_returns_train.png)
![命中率分析](output/patterns/pattern_hit_rate_train.png) ![命中率分析](../output/patterns/pattern_hit_rate_train.png)
--- ---
@@ -602,13 +602,13 @@ Top-10 IC 中有 9/10 方向一致1 个SMA_20_100发生方向翻转。
暴涨暴跌状态平均仅持续 1.3 天即回归横盘暴跌后有 31.9% 概率转为暴涨反弹)。 暴涨暴跌状态平均仅持续 1.3 天即回归横盘暴跌后有 31.9% 概率转为暴涨反弹)。
![PCA聚类散点图](output/clustering/cluster_pca_k-means.png) ![PCA聚类散点图](../output/clustering/cluster_pca_k-means.png)
![聚类特征热力图](output/clustering/cluster_heatmap_k-means.png) ![聚类特征热力图](../output/clustering/cluster_heatmap_k-means.png)
![转移概率矩阵](output/clustering/cluster_transition_matrix.png) ![转移概率矩阵](../output/clustering/cluster_transition_matrix.png)
![状态时间序列](output/clustering/cluster_state_timeseries.png) ![状态时间序列](../output/clustering/cluster_state_timeseries.png)
--- ---
@@ -627,9 +627,9 @@ Top-10 IC 中有 9/10 方向一致1 个SMA_20_100发生方向翻转。
Historical Mean RMSE/RW = 0.998,仅比随机游走好 0.2%Diebold-Mariano 检验 p=0.152 **不显著**,本质上等同于随机游走。 Historical Mean RMSE/RW = 0.998,仅比随机游走好 0.2%Diebold-Mariano 检验 p=0.152 **不显著**,本质上等同于随机游走。
![预测对比](output/time_series/ts_predictions_comparison.png) ![预测对比](../output/time_series/ts_predictions_comparison.png)
![方向准确率](output/time_series/ts_direction_accuracy.png) ![方向准确率](../output/time_series/ts_direction_accuracy.png)
--- ---
@@ -680,13 +680,13 @@ Historical Mean 的 RMSE/RW = 0.998,仅比随机游走好 0.2%Diebold-Maria
> **注意**: AUC=0.99 部分反映了异常本身的聚集性(异常日前后也是异常的),不等于真正的"事前预测"能力。 > **注意**: AUC=0.99 部分反映了异常本身的聚集性(异常日前后也是异常的),不等于真正的"事前预测"能力。
![异常标记图](output/anomaly/anomaly_price_chart.png) ![异常标记图](../output/anomaly/anomaly_price_chart.png)
![特征分布对比](output/anomaly/anomaly_feature_distributions.png) ![特征分布对比](../output/anomaly/anomaly_feature_distributions.png)
![ROC曲线](output/anomaly/precursor_roc_curve.png) ![ROC曲线](../output/anomaly/precursor_roc_curve.png)
![特征重要性](output/anomaly/precursor_feature_importance.png) ![特征重要性](../output/anomaly/precursor_feature_importance.png)
--- ---
@@ -702,7 +702,7 @@ Historical Mean 的 RMSE/RW = 0.998,仅比随机游走好 0.2%Diebold-Maria
| 波动率聚集 | GARCH persistence=0.973绝对收益率ACF 88阶显著 | 可预测波动率 | | 波动率聚集 | GARCH persistence=0.973绝对收益率ACF 88阶显著 | 可预测波动率 |
| 波动率长记忆性 | 幂律衰减 d=0.635, p=5.8e-25 | FIGARCH建模 | | 波动率长记忆性 | 幂律衰减 d=0.635, p=5.8e-25 | FIGARCH建模 |
| 单向因果波动成交量 | abs_returnvolume F=55.19, Bonferroni校正后全显著 | 理解市场微观结构 | | 单向因果波动成交量 | abs_returnvolume F=55.19, Bonferroni校正后全显著 | 理解市场微观结构 |
| 异常事件前兆 | AUC=0.99356/12已知事件精确对齐 | 波动率异常预警 | | 异常事件前兆 | AUC=0.99356/12已知事件精确对齐 | 中等证据AUC 受异常聚集性膨胀波动率异常预警 |
#### ⚠️ 中等证据(统计显著但效果有限) #### ⚠️ 中等证据(统计显著但效果有限)
@@ -795,7 +795,7 @@ Historical Mean 的 RMSE/RW = 0.998,仅比随机游走好 0.2%Diebold-Maria
- **多粒度稳定性**: 1m/5m/15m/1h四个粒度结论高度一致平均相关系数1.000 - **多粒度稳定性**: 1m/5m/15m/1h四个粒度结论高度一致平均相关系数1.000
**核心发现**: **核心发现**:
- 日内收益率自相关在亚洲时段为-0.0499,显示微弱的均值回归特征 - 日内收益率自相关在亚洲时段为-0.0499(绝对值极小,接近噪声水平,需结合样本量和置信区间判断是否具有统计显著性)
- 各时段收益率差异的Kruskal-Wallis检验显著p<0.05时区效应存在 - 各时段收益率差异的Kruskal-Wallis检验显著p<0.05时区效应存在
- **多粒度稳定性极强**相关系数=1.000),说明日内模式在不同采样频率下保持一致 - **多粒度稳定性极强**相关系数=1.000),说明日内模式在不同采样频率下保持一致
@@ -807,7 +807,7 @@ Historical Mean 的 RMSE/RW = 0.998,仅比随机游走好 0.2%Diebold-Maria
| 参数 | 估计值 | R² | 解读 | | 参数 | 估计值 | R² | 解读 |
|------|--------|-----|------| |------|--------|-----|------|
| **Hurst指数H** | **0.4803** | 0.9996 | <0.5微弱均值回归 | | **标度指数 H_scaling** | **0.4803** | 0.9996 | <0.5微弱均值回归 |
| 标度常数c | 0.0362 | | 日波动率基准 | | 标度常数c | 0.0362 | | 日波动率基准 |
| 波动率跨度比 | 170.5 | | 从1m到1mo的σ比值 | | 波动率跨度比 | 170.5 | | 从1m到1mo的σ比值 |
@@ -833,7 +833,7 @@ Historical Mean 的 RMSE/RW = 0.998,仅比随机游走好 0.2%Diebold-Maria
高阶矩更大波动的自相关衰减更快说明大波动后的可预测性更低 高阶矩更大波动的自相关衰减更快说明大波动后的可预测性更低
**核心发现**: **核心发现**:
1. **Hurst指数H=0.4803**R²=0.9996略低于0.5显示微弱的均值回归特征 1. **标度指数 H_scaling=0.4803**R²=0.9996略低于0.5显示微弱的均值回归特征注意此处的标度指数衡量的是波动率跨时间尺度的缩放关系 σ(Δt) (Δt)^H与第 5 章的 Hurst 指数衡量收益率序列自相关结构H_RS0.59含义不同两者并不矛盾
2. **1分钟峰度(118.21)是日线峰度(15.65)的7.6倍**高频数据尖峰厚尾特征极其显著 2. **1分钟峰度(118.21)是日线峰度(15.65)的7.6倍**高频数据尖峰厚尾特征极其显著
3. 波动率跨度达170倍从1m的0.11%到1mo的19.5% 3. 波动率跨度达170倍从1m的0.11%到1mo的19.5%
4. **标度律拟合优度极高**R²=0.9996说明波动率标度关系非常稳健 4. **标度律拟合优度极高**R²=0.9996说明波动率标度关系非常稳健
@@ -860,7 +860,7 @@ RV_t = β₀ + β_d·RV_{t-1} + β_w·RV_{t-1}^{(w)} + β_m·RV_{t-1}^{(m)} + ε
**核心发现**: **核心发现**:
1. **月尺度RV对次日RV预测贡献最大**51.7%远超日尺度9.4% 1. **月尺度RV对次日RV预测贡献最大**51.7%远超日尺度9.4%
2. HAR-RV模型R²=9.3%虽然统计显著但预测力有限 2. HAR-RV模型R²=9.3%虽然统计显著但预测力有限
3. **跳跃检测**: 检测到2,979个显著跳跃事件占比96.4%显示价格过程包含大量不连续变动 3. **跳跃检测**: 检测到2,979个显著跳跃事件占比96.4%极高的检出率表明 BTC 价格过程本质上以不连续跳跃为常态而非例外也可能反映跳跃检测阈值相对于加密货币市场的高波动率偏低
4. **已实现偏度/峰度**: 平均已实现偏度0峰度0说明日内收益率分布相对对称但存在尖峰 4. **已实现偏度/峰度**: 平均已实现偏度0峰度0说明日内收益率分布相对对称但存在尖峰
--- ---
@@ -869,7 +869,7 @@ RV_t = β₀ + β_d·RV_{t-1} + β_w·RV_{t-1}^{(w)} + β_m·RV_{t-1}^{(m)} + ε
> 信息熵分析模块已加载,等待实际数据验证。 > 信息熵分析模块已加载,等待实际数据验证。
**理论预期**: **理论预期(假设值,非实测数据)**:
| 尺度 | 熵值(bits) | 最大熵 | 归一化熵 | 可预测性 | | 尺度 | 熵值(bits) | 最大熵 | 归一化熵 | 可预测性 |
|------|-----------|-------|---------|---------| |------|-----------|-------|---------|---------|
| 1m | ~4.9 | 5.00 | ~0.98 | 极低 | | 1m | ~4.9 | 5.00 | ~0.98 | 极低 |
@@ -896,7 +896,7 @@ RV_t = β₀ + β_d·RV_{t-1} + β_w·RV_{t-1}^{(w)} + β_m·RV_{t-1}^{(m)} + ε
| 参数 | 估计值 | 解读 | | 参数 | 估计值 | 解读 |
|------|-------|------| |------|-------|------|
| 尺度σ | 0.028 | 超阈值波动幅度 | | 尺度σ | 0.028 | 超阈值波动幅度 |
| 形状ξ | -0.147 | 指数尾部ξ0 | | 形状ξ | -0.147 | 有界尾部ξ<0GPD 有上界 GEV 负向尾部结论一致 |
**多尺度VaR/CVaR实际回测通过**: **多尺度VaR/CVaR实际回测通过**:
| 尺度 | VaR 95% | CVaR 95% | VaR 99% | CVaR 99% | 回测状态 | | 尺度 | VaR 95% | CVaR 95% | VaR 99% | CVaR 99% | 回测状态 |
@@ -936,8 +936,8 @@ RV_t = β₀ + β_d·RV_{t-1} + β_w·RV_{t-1}^{(w)} + β_m·RV_{t-1}^{(m)} + ε
| 3d | | | | | | | 1.00 | | | 3d | | | | | | | 1.00 | |
| 1w | | | | | | | | 1.00 | | 1w | | | | | | | | 1.00 |
**平均跨尺度相关系数**: 0.788 **平均跨尺度相关系数**: 0.788仅基于有数据的尺度对计算
**最高相关对**: 15m-4h (r=1.000) **最高相关对**: 15m-4h (r=1.000,该极高值可能由日频对齐聚合导致,非原始 tick 级相关)
**领先滞后分析**: **领先滞后分析**:
- 最优滞后期矩阵显示各尺度间最大滞后为0-5天 - 最优滞后期矩阵显示各尺度间最大滞后为0-5天
@@ -1004,7 +1004,7 @@ RV_t = β₀ + β_d·RV_{t-1} + β_w·RV_{t-1}^{(w)} + β_m·RV_{t-1}^{(m)} + ε
|---------|---------|---------|---------| |---------|---------|---------|---------|
| **微观结构** | 极低非流动性(Amihud~0)VPIN=0.20预警崩盘 | ✅ 已验证 | 高频(≤5m) | | **微观结构** | 极低非流动性(Amihud~0)VPIN=0.20预警崩盘 | ✅ 已验证 | 高频(≤5m) |
| **日内模式** | 日内U型曲线各时段差异显著 | ✅ 已验证 | 日内(1h) | | **日内模式** | 日内U型曲线各时段差异显著 | ✅ 已验证 | 日内(1h) |
| **波动率标度** | H=0.4803微弱均值回归R²=0.9996 | ✅ 已验证 | 全尺度 | | **波动率标度** | H_scaling=0.4803(波动率缩放指数,非 Hurst 指数)R²=0.9996 | ✅ 已验证 | 全尺度 |
| **HAR-RV** | 月RV贡献51.7%跳跃事件96.4% | ✅ 已验证 | 中高频 | | **HAR-RV** | 月RV贡献51.7%跳跃事件96.4% | ✅ 已验证 | 中高频 |
| **信息熵** | 细粒度熵更高更难预测 | ⏳ 待验证 | 全尺度 | | **信息熵** | 细粒度熵更高更难预测 | ⏳ 待验证 | 全尺度 |
| **极端风险** | 正尾重尾(ξ=+0.12),负尾有界(ξ=-0.76)VaR回测通过 | ✅ 已验证 | 日/周 | | **极端风险** | 正尾重尾(ξ=+0.12),负尾有界(ξ=-0.76)VaR回测通过 | ✅ 已验证 | 日/周 |
@@ -1108,11 +1108,11 @@ RV_t = β₀ + β_d·RV_{t-1} + β_w·RV_{t-1}^{(w)} + β_m·RV_{t-1}^{(m)} + ε
基于日线对数收益率参数(μ=0.000935, σ=0.0361),在几何布朗运动假设下: 基于日线对数收益率参数(μ=0.000935, σ=0.0361),在几何布朗运动假设下:
**风险中性漂移修正**: E[ln(S_T/S_0)] = (μ - σ²/2) × T = 0.000283/天 **对数正态中位数修正**Jensen 不等式修正): E[ln(S_T/S_0)] = (μ - σ²/2) × T = 0.000283/天
| 时间跨度 | 中位数预期 | -1σ (16%分位) | +1σ (84%分位) | -2σ (2.5%分位) | +2σ (97.5%分位) | | 时间跨度 | 中位数预期 | -1σ (16%分位) | +1σ (84%分位) | -2σ (2.5%分位) | +2σ (97.5%分位) |
|---------|-----------|-------------|-------------|-------------|---------------| |---------|-----------|-------------|-------------|-------------|---------------|
| 6 个月 (183天) | $80,834 | $52,891 | $123,470 | $36,267 | $180,129 | | 6 个月 (183天) | $81,057 | $49,731 | $132,130 | $30,502 | $215,266 |
| 1 年 (365天) | $85,347 | $42,823 | $170,171 | $21,502 | $338,947 | | 1 年 (365天) | $85,347 | $42,823 | $170,171 | $21,502 | $338,947 |
| 2 年 (730天) | $94,618 | $35,692 | $250,725 | $13,475 | $664,268 | | 2 年 (730天) | $94,618 | $35,692 | $250,725 | $13,475 | $664,268 |
@@ -1146,7 +1146,7 @@ RV_t = β₀ + β_d·RV_{t-1} + β_w·RV_{t-1}^{(w)} + β_m·RV_{t-1}^{(m)} + ε
**推演**: **推演**:
- 如果按第 3 次减半的轨迹形态r=0.81但收益率大幅衰减0.06x~0.18x 缩减比 4 次周期可能已经或接近峰值 - 如果按第 3 次减半的轨迹形态r=0.81但收益率大幅衰减0.06x~0.18x 缩减比 4 次周期可能已经或接近峰值
- 3 次减半在 ~550 天达到顶点后进入长期下跌随后的 2022 年熊市若类比成立2026Q1-Q2 可能处于"周期后期" - 3 次减半在 ~550 天达到顶点后进入长期下跌随后的 2022 年熊市若类比成立2026Q1-Q2 可能处于"周期后期"
- ** 2 个样本的统计功效极低**Welch's t 合并 p=0.991不能依赖此推演 - ** 2 个样本的统计功效极低**Welch's t 合并 p=0.991此框架仅作叙事参考,不具有数据驱动的预测力
### 17.6 框架四:马尔可夫状态模型推演 ### 17.6 框架四:马尔可夫状态模型推演
@@ -1194,7 +1194,7 @@ RV_t = β₀ + β_d·RV_{t-1} + β_w·RV_{t-1}^{(w)} + β_m·RV_{t-1}^{(m)} + ε
| 1 年目标 | $130,000 ~ $200,000 | GBM +1σ 区间 + Hurst 趋势持续 | | 1 年目标 | $130,000 ~ $200,000 | GBM +1σ 区间 + Hurst 趋势持续 |
| 2 年目标 | $180,000 ~ $350,000 | GBM +1σ~+2σ幂律上轨 $140K | | 2 年目标 | $180,000 ~ $350,000 | GBM +1σ~+2σ幂律上轨 $140K |
| 触发条件 | 连续突破幂律 95% 上轨 ($119,340) | 历史上 2021 年曾发生 | | 触发条件 | 连续突破幂律 95% 上轨 ($119,340) | 历史上 2021 年曾发生 |
| 概率依据 | 马尔可夫暴涨状态 14.6% × Hurst 趋势延续 98.9% | 但单次暴涨仅持续 1.3 | | 概率依据 | 参考马尔可夫暴涨状态 14.6% Hurst 趋势延续 98.9%综合判断非简单乘积 | 但单次暴涨仅持续 1.3 |
**数据支撑**: Hurst H=0.593 表明价格有弱趋势延续性一旦进入上行通道可能持续周线 H=0.67 暗示更长周期趋势性更强但暴涨状态平均仅 1.3 需要连续多次暴涨才能实现 **数据支撑**: Hurst H=0.593 表明价格有弱趋势延续性一旦进入上行通道可能持续周线 H=0.67 暗示更长周期趋势性更强但暴涨状态平均仅 1.3 需要连续多次暴涨才能实现
@@ -1298,4 +1298,4 @@ RV_t = β₀ + β_d·RV_{t-1} + β_w·RV_{t-1}^{(w)} + β_m·RV_{t-1}^{(m)} + ε
--- ---
*报告生成日期: 2026-02-03 | 分析代码: [src/](src/) | 图表输出: [output/](output/)* *报告生成日期: 2026-02-03 | 分析代码: [src/](../src/) | 图表输出: [output/](../output/)*

View File

@@ -88,6 +88,10 @@ def run_single_module(key, df, df_hourly, output_base):
mod = _import_module(mod_name) mod = _import_module(mod_name)
func = getattr(mod, func_name) func = getattr(mod, func_name)
if needs_hourly and df_hourly is None:
print(f" [{key}] 跳过(需要小时数据但未加载)")
return {"status": "skipped", "error": "小时数据未加载", "findings": []}
if needs_hourly: if needs_hourly:
result = func(df, df_hourly, module_output) result = func(df, df_hourly, module_output)
else: else:
@@ -96,7 +100,7 @@ def run_single_module(key, df, df_hourly, output_base):
if result is None: if result is None:
result = {"status": "completed", "findings": []} result = {"status": "completed", "findings": []}
result["status"] = "success" result.setdefault("status", "success")
print(f" [{key}] 完成 ✓") print(f" [{key}] 完成 ✓")
return result return result

View File

@@ -21,7 +21,7 @@ from typing import Optional, Dict, List, Tuple
from sklearn.ensemble import IsolationForest, RandomForestClassifier from sklearn.ensemble import IsolationForest, RandomForestClassifier
from sklearn.neighbors import LocalOutlierFactor from sklearn.neighbors import LocalOutlierFactor
from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_val_predict, StratifiedKFold from sklearn.model_selection import TimeSeriesSplit
from sklearn.metrics import roc_auc_score, roc_curve from sklearn.metrics import roc_auc_score, roc_curve
from src.data_loader import load_klines from src.data_loader import load_klines
@@ -323,9 +323,9 @@ def extract_precursor_features(
X = pd.DataFrame(precursor_features, index=df_aligned.index) X = pd.DataFrame(precursor_features, index=df_aligned.index)
# 标签: 未来是否出现异常(shift(-1) 使得特征是"之前"的 # 标签: 预测次日是否出现异常(前瞻1天
# 我们用当前特征预测当天是否异常 y = labels_aligned.shift(-1).dropna()
y = labels_aligned X = X.loc[y.index] # 对齐特征和标签
# 去除 NaN # 去除 NaN
valid_mask = X.notna().all(axis=1) & y.notna() valid_mask = X.notna().all(axis=1) & y.notna()
@@ -360,17 +360,13 @@ def train_precursor_classifier(
print(f" [警告] 样本不足 (n={len(X)}, 正例={y.sum()}),跳过分类器训练") print(f" [警告] 样本不足 (n={len(X)}, 正例={y.sum()}),跳过分类器训练")
return {} return {}
# 标准化 # 时间序列交叉验证
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 分层 K 折
n_splits = min(5, int(y.sum())) n_splits = min(5, int(y.sum()))
if n_splits < 2: if n_splits < 2:
print(" [警告] 正例数过少,无法进行交叉验证") print(" [警告] 正例数过少,无法进行交叉验证")
return {} return {}
cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=42) cv = TimeSeriesSplit(n_splits=n_splits)
clf = RandomForestClassifier( clf = RandomForestClassifier(
n_estimators=200, n_estimators=200,
@@ -381,27 +377,41 @@ def train_precursor_classifier(
n_jobs=-1, n_jobs=-1,
) )
# 交叉验证预测概率 # 手动交叉验证(每折单独 fit scaler防止数据泄漏
try: try:
y_prob = cross_val_predict(clf, X_scaled, y, cv=cv, method='predict_proba')[:, 1] y_prob = np.full(len(y), np.nan)
auc = roc_auc_score(y, y_prob) for train_idx, val_idx in cv.split(X):
X_train, X_val = X.iloc[train_idx], X.iloc[val_idx]
y_train, y_val = y.iloc[train_idx], y.iloc[val_idx]
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_val_scaled = scaler.transform(X_val)
clf.fit(X_train_scaled, y_train)
y_prob[val_idx] = clf.predict_proba(X_val_scaled)[:, 1]
# 去除未被验证的样本(如有)
valid_prob_mask = ~np.isnan(y_prob)
y_eval = y[valid_prob_mask]
y_prob_eval = y_prob[valid_prob_mask]
auc = roc_auc_score(y_eval, y_prob_eval)
except Exception as e: except Exception as e:
print(f" [错误] 交叉验证失败: {e}") print(f" [错误] 交叉验证失败: {e}")
return {} return {}
# 在全量数据上训练获取特征重要性 # 在全量数据上训练获取特征重要性
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
clf.fit(X_scaled, y) clf.fit(X_scaled, y)
importances = pd.Series(clf.feature_importances_, index=X.columns) importances = pd.Series(clf.feature_importances_, index=X.columns)
importances = importances.sort_values(ascending=False) importances = importances.sort_values(ascending=False)
# ROC 曲线数据 # ROC 曲线数据
fpr, tpr, thresholds = roc_curve(y, y_prob) fpr, tpr, thresholds = roc_curve(y_eval, y_prob_eval)
results = { results = {
'auc': auc, 'auc': auc,
'feature_importances': importances, 'feature_importances': importances,
'y_true': y, 'y_true': y_eval,
'y_prob': y_prob, 'y_prob': y_prob_eval,
'fpr': fpr, 'fpr': fpr,
'tpr': tpr, 'tpr': tpr,
} }

View File

@@ -539,6 +539,26 @@ def run_calendar_analysis(
# 4. 季度 & 月初月末效应 # 4. 季度 & 月初月末效应
analyze_quarter_and_month_boundary(df, output_dir) analyze_quarter_and_month_boundary(df, output_dir)
# 稳健性检查:前半段 vs 后半段效应一致性
midpoint = len(df) // 2
df_first_half = df.iloc[:midpoint]
df_second_half = df.iloc[midpoint:]
print(f"\n [稳健性检查] 数据前半段 vs 后半段效应一致性")
print(f" 前半段: {df_first_half.index.min().date()} ~ {df_first_half.index.max().date()}")
print(f" 后半段: {df_second_half.index.min().date()} ~ {df_second_half.index.max().date()}")
# 比较前后半段的星期效应一致性
if 'log_return' in df.columns:
df_work = df.dropna(subset=['log_return']).copy()
df_work['weekday'] = df_work.index.dayofweek
mid_work = len(df_work) // 2
first_half_means = df_work.iloc[:mid_work].groupby('weekday')['log_return'].mean()
second_half_means = df_work.iloc[mid_work:].groupby('weekday')['log_return'].mean()
# 检查各星期均值符号是否一致
consistent = (first_half_means * second_half_means > 0).sum()
total = len(first_half_means)
print(f" 星期效应符号一致性: {consistent}/{total} 个星期方向一致")
print("\n" + "#" * 70) print("\n" + "#" * 70)
print("# 日历效应分析完成") print("# 日历效应分析完成")
print("#" * 70) print("#" * 70)

View File

@@ -17,7 +17,7 @@ import warnings
from pathlib import Path from pathlib import Path
from typing import Optional, List, Tuple, Dict from typing import Optional, List, Tuple, Dict
from statsmodels.tsa.stattools import grangercausalitytests from statsmodels.tsa.stattools import grangercausalitytests, adfuller
from src.data_loader import load_hourly from src.data_loader import load_hourly
from src.preprocessing import log_returns, add_derived_features from src.preprocessing import log_returns, add_derived_features
@@ -46,7 +46,20 @@ TEST_LAGS = [1, 2, 3, 5, 10]
# ============================================================ # ============================================================
# 2. 单对 Granger 因果检验 # 2. ADF 平稳性检验辅助函数
# ============================================================
def _check_stationarity(series, name, alpha=0.05):
"""ADF 平稳性检验,非平稳则取差分"""
result = adfuller(series.dropna(), autolag='AIC')
if result[1] > alpha:
print(f" [注意] {name} 非平稳 (ADF p={result[1]:.4f}),使用差分序列")
return series.diff().dropna(), True
return series, False
# ============================================================
# 3. 单对 Granger 因果检验
# ============================================================ # ============================================================
def granger_test_pair( def granger_test_pair(
@@ -87,6 +100,15 @@ def granger_test_pair(
print(f" [警告] {cause}{effect}: 样本量不足 ({len(data)}),跳过") print(f" [警告] {cause}{effect}: 样本量不足 ({len(data)}),跳过")
return [] return []
# ADF 平稳性检验,非平稳则取差分
effect_series, effect_diffed = _check_stationarity(data[effect], effect)
cause_series, cause_diffed = _check_stationarity(data[cause], cause)
if effect_diffed or cause_diffed:
data = pd.concat([effect_series, cause_series], axis=1).dropna()
if len(data) < max_lag + 20:
print(f" [警告] {cause}{effect}: 差分后样本量不足 ({len(data)}),跳过")
return []
results = [] results = []
try: try:
# 执行检验maxlag 取最大值,一次获取所有滞后 # 执行检验maxlag 取最大值,一次获取所有滞后
@@ -578,14 +600,10 @@ def run_causality_analysis(
# --- 因果关系网络图 --- # --- 因果关系网络图 ---
print("\n>>> [4/4] 绘制因果关系网络图...") print("\n>>> [4/4] 绘制因果关系网络图...")
# 使用所有结果(含跨时间尺度) # 使用所有结果(含跨时间尺度),直接使用各组已做的 Bonferroni 校正结果,
# 不再重复校正(各组检验已独立校正,合并后再校正会导致双重惩罚)
if not all_results.empty: if not all_results.empty:
# 重新做一次 Bonferroni 校正(因为合并后总检验数增加) plot_causal_network(all_results, output_dir)
all_corrected = apply_bonferroni(all_results.drop(
columns=['bonferroni_alpha', 'significant_raw', 'significant_corrected'],
errors='ignore'
), alpha=0.05)
plot_causal_network(all_corrected, output_dir)
else: else:
print(" [警告] 无可用结果,跳过网络图") print(" [警告] 无可用结果,跳过网络图")

View File

@@ -250,24 +250,34 @@ def _interpret_clusters(df_clean: pd.DataFrame, labels: np.ndarray,
print(f"{method_name} 聚类特征均值") print(f"{method_name} 聚类特征均值")
print("=" * 60) print("=" * 60)
# 自动标注状态 # 自动标注状态(基于数据分布的自适应阈值)
state_labels = {} state_labels = {}
# 计算自适应阈值:基于聚类均值的标准差
lr_values = cluster_means["log_return"]
abs_r_values = cluster_means["abs_return"]
lr_std = lr_values.std() if len(lr_values) > 1 else 0.02
abs_r_std = abs_r_values.std() if len(abs_r_values) > 1 else 0.02
high_lr_threshold = max(0.005, lr_std) # 至少 0.5% 作为下限
high_abs_threshold = max(0.005, abs_r_std)
mild_lr_threshold = max(0.002, high_lr_threshold * 0.25)
for cid in cluster_means.index: for cid in cluster_means.index:
row = cluster_means.loc[cid] row = cluster_means.loc[cid]
lr = row["log_return"] lr = row["log_return"]
vol = row["vol_7d"] vol = row["vol_7d"]
abs_r = row["abs_return"] abs_r = row["abs_return"]
# 基于收益率和波动率的规则判断 # 基于自适应阈值的规则判断
if lr > 0.02 and abs_r > 0.02: if lr > high_lr_threshold and abs_r > high_abs_threshold:
label = "surge" label = "surge"
elif lr < -0.02 and abs_r > 0.02: elif lr < -high_lr_threshold and abs_r > high_abs_threshold:
label = "crash" label = "crash"
elif lr > 0.005: elif lr > mild_lr_threshold:
label = "mild_up" label = "mild_up"
elif lr < -0.005: elif lr < -mild_lr_threshold:
label = "mild_down" label = "mild_down"
elif abs_r > 0.015 or vol > cluster_means["vol_7d"].median() * 1.5: elif abs_r > high_abs_threshold * 0.75 or vol > cluster_means["vol_7d"].median() * 1.5:
label = "high_vol" label = "high_vol"
else: else:
label = "sideways" label = "sideways"

View File

@@ -13,12 +13,6 @@ AVAILABLE_INTERVALS = [
"1d", "3d", "1w", "1mo" "1d", "3d", "1w", "1mo"
] ]
COLUMNS = [
"open_time", "open", "high", "low", "close", "volume",
"close_time", "quote_volume", "trades",
"taker_buy_volume", "taker_buy_quote_volume", "ignore"
]
NUMERIC_COLS = [ NUMERIC_COLS = [
"open", "high", "low", "close", "volume", "open", "high", "low", "close", "volume",
"quote_volume", "trades", "taker_buy_volume", "taker_buy_quote_volume" "quote_volume", "trades", "taker_buy_volume", "taker_buy_quote_volume"
@@ -27,7 +21,7 @@ NUMERIC_COLS = [
def _adaptive_timestamp(ts_series: pd.Series) -> pd.DatetimeIndex: def _adaptive_timestamp(ts_series: pd.Series) -> pd.DatetimeIndex:
"""自适应处理毫秒(13位)和微秒(16位)时间戳""" """自适应处理毫秒(13位)和微秒(16位)时间戳"""
ts = ts_series.astype(np.int64) ts = pd.to_numeric(ts_series, errors="coerce").astype(np.int64)
# 16位时间戳(微秒) -> 转为毫秒 # 16位时间戳(微秒) -> 转为毫秒
mask = ts > 1e15 mask = ts > 1e15
ts = ts.copy() ts = ts.copy()
@@ -91,9 +85,15 @@ def load_klines(
# 时间范围过滤 # 时间范围过滤
if start: if start:
try:
df = df[df.index >= pd.Timestamp(start)] df = df[df.index >= pd.Timestamp(start)]
except ValueError:
print(f"[警告] 无效的起始日期 '{start}',忽略")
if end: if end:
try:
df = df[df.index <= pd.Timestamp(end)] df = df[df.index <= pd.Timestamp(end)]
except ValueError:
print(f"[警告] 无效的结束日期 '{end}',忽略")
return df return df
@@ -110,6 +110,10 @@ def load_hourly(start: Optional[str] = None, end: Optional[str] = None) -> pd.Da
def validate_data(df: pd.DataFrame, interval: str = "1d") -> dict: def validate_data(df: pd.DataFrame, interval: str = "1d") -> dict:
"""数据完整性校验""" """数据完整性校验"""
if len(df) == 0:
return {"rows": 0, "date_range": "N/A", "null_counts": {}, "duplicate_index": 0,
"price_range": "N/A", "negative_volume": 0}
report = { report = {
"rows": len(df), "rows": len(df),
"date_range": f"{df.index.min()} ~ {df.index.max()}", "date_range": f"{df.index.min()} ~ {df.index.max()}",

View File

@@ -104,8 +104,9 @@ def compute_fft_spectrum(
freqs_pos = freqs[pos_mask] freqs_pos = freqs[pos_mask]
yf_pos = yf[pos_mask] yf_pos = yf[pos_mask]
# 功率谱密度:|FFT|^2 / (N * 窗函数能量) # 功率谱密度:单边谱乘2加入采样频率 fs 归一化
power = (np.abs(yf_pos) ** 2) / (n * window_energy) fs = 1.0 / sampling_period_days # 采样频率 (cycles/day)
power = 2.0 * (np.abs(yf_pos) ** 2) / (n * fs * window_energy)
# 对应周期 # 对应周期
periods = 1.0 / freqs_pos periods = 1.0 / freqs_pos
@@ -122,6 +123,7 @@ def ar1_red_noise_spectrum(
freqs: np.ndarray, freqs: np.ndarray,
sampling_period_days: float, sampling_period_days: float,
confidence_percentile: float = 95.0, confidence_percentile: float = 95.0,
power: Optional[np.ndarray] = None,
) -> Tuple[np.ndarray, np.ndarray]: ) -> Tuple[np.ndarray, np.ndarray]:
""" """
基于AR(1)模型估算红噪声理论功率谱 基于AR(1)模型估算红噪声理论功率谱
@@ -139,6 +141,8 @@ def ar1_red_noise_spectrum(
采样周期 采样周期
confidence_percentile : float confidence_percentile : float
置信水平百分位数默认95% 置信水平百分位数默认95%
power : np.ndarray, optional
信号功率谱,用于经验缩放使理论谱均值匹配信号谱均值
Returns Returns
------- -------
@@ -165,7 +169,11 @@ def ar1_red_noise_spectrum(
denominator = 1 - 2 * rho * cos_term + rho ** 2 denominator = 1 - 2 * rho * cos_term + rho ** 2
noise_mean = s0 / denominator noise_mean = s0 / denominator
# 归一化使均值与信号功率谱均值匹配(经验缩放) # 经验缩放:使理论谱均值匹配信号谱均值
if power is not None and np.mean(noise_mean) > 0:
scale_factor_empirical = np.mean(power) / np.mean(noise_mean)
noise_mean = noise_mean * scale_factor_empirical
# 在chi-squared分布下FFT功率近似服从指数分布自由度2 # 在chi-squared分布下FFT功率近似服从指数分布自由度2
# 95%置信上界 = 均值 * chi2_ppf(0.95, 2) / 2 ≈ 均值 * 2.996 # 95%置信上界 = 均值 * chi2_ppf(0.95, 2) / 2 ≈ 均值 * 2.996
from scipy.stats import chi2 from scipy.stats import chi2
@@ -751,7 +759,8 @@ def _analyze_single_timeframe(
# AR(1)红噪声基线 # AR(1)红噪声基线
noise_mean, noise_threshold = ar1_red_noise_spectrum( noise_mean, noise_threshold = ar1_red_noise_spectrum(
log_ret, freqs, sampling_period_days, confidence_percentile=95.0 log_ret, freqs, sampling_period_days, confidence_percentile=95.0,
power=power,
) )
# 峰值检测 # 峰值检测

View File

@@ -90,16 +90,16 @@ def box_counting_dimension(prices: np.ndarray,
if num_boxes_per_side < 2: if num_boxes_per_side < 2:
continue continue
# 盒子大小(在归一化空间中) # 独立归一化 x 和 y 到盒子网格,避免纵横比失真
box_size = 1.0 / num_boxes_per_side x_range = x.max() - x.min()
y_range = y.max() - y.min()
# 计算每个数据点所在的盒子编号 if x_range == 0:
# x方向时间划分 x_range = 1.0
x_box = np.floor(x / box_size).astype(int) if y_range == 0:
y_range = 1.0
x_box = np.floor((x - x.min()) / x_range * (num_boxes_per_side - 1)).astype(int)
y_box = np.floor((y - y.min()) / y_range * (num_boxes_per_side - 1)).astype(int)
x_box = np.clip(x_box, 0, num_boxes_per_side - 1) x_box = np.clip(x_box, 0, num_boxes_per_side - 1)
# y方向价格划分
y_box = np.floor(y / box_size).astype(int)
y_box = np.clip(y_box, 0, num_boxes_per_side - 1) y_box = np.clip(y_box, 0, num_boxes_per_side - 1)
# 还需要考虑相邻点之间的连线经过的盒子 # 还需要考虑相邻点之间的连线经过的盒子
@@ -120,11 +120,12 @@ def box_counting_dimension(prices: np.ndarray,
for t in np.linspace(0, 1, steps + 1): for t in np.linspace(0, 1, steps + 1):
xi = x[i] + t * (x[i + 1] - x[i]) xi = x[i] + t * (x[i + 1] - x[i])
yi = y[i] + t * (y[i + 1] - y[i]) yi = y[i] + t * (y[i + 1] - y[i])
bx = int(np.clip(np.floor(xi / box_size), 0, num_boxes_per_side - 1)) bx = int(np.clip(np.floor((xi - x.min()) / x_range * (num_boxes_per_side - 1)), 0, num_boxes_per_side - 1))
by = int(np.clip(np.floor(yi / box_size), 0, num_boxes_per_side - 1)) by = int(np.clip(np.floor((yi - y.min()) / y_range * (num_boxes_per_side - 1)), 0, num_boxes_per_side - 1))
occupied.add((bx, by)) occupied.add((bx, by))
count = len(occupied) count = len(occupied)
box_size = 1.0 / num_boxes_per_side # 等效盒子大小,用于缩放关系
if count > 0: if count > 0:
log_inv_scales.append(np.log(1.0 / box_size)) log_inv_scales.append(np.log(1.0 / box_size))
log_counts.append(np.log(count)) log_counts.append(np.log(count))
@@ -337,7 +338,7 @@ def mfdfa_analysis(series: np.ndarray, q_list=None, scales=None) -> Dict:
包含 hq, q_list, h_list, tau, alpha, f_alpha, multifractal_width 包含 hq, q_list, h_list, tau, alpha, f_alpha, multifractal_width
""" """
if q_list is None: if q_list is None:
q_list = [-5, -4, -3, -2, -1, -0.5, 0.5, 1, 2, 3, 4, 5] q_list = [-5, -4, -3, -2, -1, -0.5, 0, 0.5, 1, 2, 3, 4, 5]
N = len(series) N = len(series)
if scales is None: if scales is None:
@@ -476,7 +477,7 @@ def multi_timeframe_fractal(df_1h: pd.DataFrame, df_4h: pd.DataFrame, df_1d: pd.
results[name] = { results[name] = {
'样本量': len(prices), '样本量': len(prices),
'分形维数': D, '分形维数': D,
'Hurst(从D)': 2.0 - D, 'Hurst(从D)': 2.0 - D, # 仅对自仿射 fBm 严格成立,真实数据为近似值
'多重分形宽度': multifractal_width, '多重分形宽度': multifractal_width,
'Hurst(MF-DFA,q=2)': h_q2, 'Hurst(MF-DFA,q=2)': h_q2,
} }

View File

@@ -103,6 +103,8 @@ def rs_hurst(series: np.ndarray, min_window: int = 10, max_window: Optional[int]
log(窗口大小) log(窗口大小)
log_rs : np.ndarray log_rs : np.ndarray
log(平均R/S值) log(平均R/S值)
r_squared : float
线性拟合的 R^2 拟合优度
""" """
n = len(series) n = len(series)
if max_window is None: if max_window is None:
@@ -143,12 +145,19 @@ def rs_hurst(series: np.ndarray, min_window: int = 10, max_window: Optional[int]
# 线性回归log(R/S) = H * log(n) + c # 线性回归log(R/S) = H * log(n) + c
if len(log_ns) < 3: if len(log_ns) < 3:
return 0.5, log_ns, log_rs return 0.5, log_ns, log_rs, 0.0
coeffs = np.polyfit(log_ns, log_rs, 1) coeffs = np.polyfit(log_ns, log_rs, 1)
H = coeffs[0] H = coeffs[0]
return H, log_ns, log_rs # 计算 R^2 拟合优度
predicted = H * log_ns + coeffs[1]
ss_res = np.sum((log_rs - predicted) ** 2)
ss_tot = np.sum((log_rs - np.mean(log_rs)) ** 2)
r_squared = 1 - ss_res / ss_tot if ss_tot > 0 else 0.0
print(f" R/S Hurst 拟合 R² = {r_squared:.4f}")
return H, log_ns, log_rs, r_squared
# ============================================================ # ============================================================
@@ -166,7 +175,7 @@ def dfa_hurst(series: np.ndarray) -> float:
Returns Returns
------- -------
float float
DFA估计的Hurst指数DFA指数α,对于分数布朗运动 α = H + 0.5 - 0.5 = H DFA估计的Hurst指数对增量过程(对数收益率),DFA 指数 α 近似等于 Hurst 指数 H
""" """
if HAS_NOLDS: if HAS_NOLDS:
# nolds.dfa 返回的是DFA scaling exponent α # nolds.dfa 返回的是DFA scaling exponent α
@@ -212,11 +221,12 @@ def cross_validate_hurst(series: np.ndarray) -> Dict[str, float]:
dict dict
包含两种方法的Hurst值及其差异 包含两种方法的Hurst值及其差异
""" """
h_rs, _, _ = rs_hurst(series) h_rs, _, _, r_squared = rs_hurst(series)
h_dfa = dfa_hurst(series) h_dfa = dfa_hurst(series)
result = { result = {
'R/S Hurst': h_rs, 'R/S Hurst': h_rs,
'R/S R²': r_squared,
'DFA Hurst': h_dfa, 'DFA Hurst': h_dfa,
'两种方法差异': abs(h_rs - h_dfa), '两种方法差异': abs(h_rs - h_dfa),
'平均值': (h_rs + h_dfa) / 2, '平均值': (h_rs + h_dfa) / 2,
@@ -262,7 +272,7 @@ def rolling_hurst(series: np.ndarray, dates: pd.DatetimeIndex,
segment = series[start_idx:end_idx] segment = series[start_idx:end_idx]
if method == 'rs': if method == 'rs':
h, _, _ = rs_hurst(segment) h, _, _, _ = rs_hurst(segment)
elif method == 'dfa': elif method == 'dfa':
h = dfa_hurst(segment) h = dfa_hurst(segment)
else: else:
@@ -313,7 +323,7 @@ def multi_timeframe_hurst(intervals: List[str] = None) -> Dict[str, Dict[str, fl
returns = returns[-100000:] returns = returns[-100000:]
# R/S分析 # R/S分析
h_rs, _, _ = rs_hurst(returns) h_rs, _, _, _ = rs_hurst(returns)
# DFA分析 # DFA分析
h_dfa = dfa_hurst(returns) h_dfa = dfa_hurst(returns)
@@ -593,8 +603,9 @@ def run_hurst_analysis(df: pd.DataFrame, output_dir: str = "output/hurst") -> Di
print("【1】R/S (Rescaled Range) 分析") print("【1】R/S (Rescaled Range) 分析")
print("-" * 50) print("-" * 50)
h_rs, log_ns, log_rs = rs_hurst(returns_arr) h_rs, log_ns, log_rs, r_squared = rs_hurst(returns_arr)
results['R/S Hurst'] = h_rs results['R/S Hurst'] = h_rs
results['R/S R²'] = r_squared
print(f" R/S Hurst指数: {h_rs:.4f}") print(f" R/S Hurst指数: {h_rs:.4f}")
print(f" 解读: {interpret_hurst(h_rs)}") print(f" 解读: {interpret_hurst(h_rs)}")

View File

@@ -248,7 +248,14 @@ def test_signal_returns(signal: pd.Series, returns: pd.Series) -> Dict:
# 用信号值(-1, 0, 1与未来收益的秩相关 # 用信号值(-1, 0, 1与未来收益的秩相关
valid_mask = signal.notna() & returns.notna() valid_mask = signal.notna() & returns.notna()
if valid_mask.sum() >= 30: if valid_mask.sum() >= 30:
ic, ic_pval = stats.spearmanr(signal[valid_mask], returns[valid_mask]) # 过滤掉无信号signal=0的样本避免稀释真实信号效果
sig_valid = signal[valid_mask]
ret_valid = returns[valid_mask]
nonzero_mask = sig_valid != 0
if nonzero_mask.sum() >= 10: # 信号样本足够则仅对有信号的日期计算
ic, ic_pval = stats.spearmanr(sig_valid[nonzero_mask], ret_valid[nonzero_mask])
else:
ic, ic_pval = stats.spearmanr(sig_valid, ret_valid)
result['ic'] = ic result['ic'] = ic
result['ic_pval'] = ic_pval result['ic_pval'] = ic_pval
else: else:
@@ -514,6 +521,9 @@ def run_indicators_analysis(df: pd.DataFrame, output_dir: str) -> Dict:
# --- 构建全部信号在全量数据上计算避免前导NaN问题 --- # --- 构建全部信号在全量数据上计算避免前导NaN问题 ---
all_signals = build_all_signals(df['close']) all_signals = build_all_signals(df['close'])
# 注意: 信号在全量数据上计算以避免前导NaN问题。
# EMA等递推指标从序列起点开始计算训练集部分不受验证集数据影响。
# 但严格的实盘模拟应在每个时间点仅使用历史数据重新计算指标。
print(f"\n共构建 {len(all_signals)} 个技术指标信号") print(f"\n共构建 {len(all_signals)} 个技术指标信号")
# ============ 训练集评估 ============ # ============ 训练集评估 ============

View File

@@ -433,8 +433,16 @@ def analyze_pattern_returns(pattern_signal: pd.Series, fwd_returns: pd.DataFrame
# 看跌:收益<0 为命中 # 看跌:收益<0 为命中
hits = (ret_1d < 0).sum() hits = (ret_1d < 0).sum()
else: else:
# 中性:取绝对值较大方向的准确率 # 中性形态不做方向性预测,报告平均绝对收益幅度
hits = max((ret_1d > 0).sum(), (ret_1d < 0).sum()) hit_rate = np.nan # 不适用方向性命中率
result['hit_rate'] = hit_rate
result['hit_count'] = 0
result['hit_n'] = int(len(ret_1d))
result['avg_abs_return'] = ret_1d.abs().mean()
result['wilson_ci_lower'] = np.nan
result['wilson_ci_upper'] = np.nan
result['binom_pval'] = np.nan
return result
n = len(ret_1d) n = len(ret_1d)
hit_rate = hits / n hit_rate = hits / n

View File

@@ -21,10 +21,15 @@ def detrend_log_diff(prices: pd.Series) -> pd.Series:
def detrend_linear(series: pd.Series) -> pd.Series: def detrend_linear(series: pd.Series) -> pd.Series:
"""线性去趋势""" """线性去趋势自动忽略NaN"""
x = np.arange(len(series)) clean = series.dropna()
coeffs = np.polyfit(x, series.values, 1) if len(clean) < 2:
trend = np.polyval(coeffs, x) return series - series.mean()
x = np.arange(len(clean))
coeffs = np.polyfit(x, clean.values, 1)
# 对完整索引计算趋势
x_full = np.arange(len(series))
trend = np.polyval(coeffs, x_full)
return pd.Series(series.values - trend, index=series.index) return pd.Series(series.values - trend, index=series.index)
@@ -35,9 +40,9 @@ def hp_filter(series: pd.Series, lamb: float = 1600) -> tuple:
return cycle, trend return cycle, trend
def rolling_volatility(returns: pd.Series, window: int = 30) -> pd.Series: def rolling_volatility(returns: pd.Series, window: int = 30, periods_per_year: int = 365) -> pd.Series:
"""滚动波动率(年化)""" """滚动波动率(年化)"""
return returns.rolling(window=window).std() * np.sqrt(365) return returns.rolling(window=window).std() * np.sqrt(periods_per_year)
def realized_volatility(returns: pd.Series, window: int = 30) -> pd.Series: def realized_volatility(returns: pd.Series, window: int = 30) -> pd.Series:
@@ -51,7 +56,11 @@ def taker_buy_ratio(df: pd.DataFrame) -> pd.Series:
def add_derived_features(df: pd.DataFrame) -> pd.DataFrame: def add_derived_features(df: pd.DataFrame) -> pd.DataFrame:
"""添加常用衍生特征列""" """添加常用衍生特征列
注意: 返回的 DataFrame 前30行部分列包含 NaN由滚动窗口计算导致
下游模块应根据需要自行处理。
"""
out = df.copy() out = df.copy()
out["log_return"] = log_returns(df["close"]) out["log_return"] = log_returns(df["close"])
out["simple_return"] = simple_returns(df["close"]) out["simple_return"] = simple_returns(df["close"])
@@ -69,8 +78,11 @@ def add_derived_features(df: pd.DataFrame) -> pd.DataFrame:
def standardize(series: pd.Series) -> pd.Series: def standardize(series: pd.Series) -> pd.Series:
"""Z-score标准化""" """Z-score标准化(零方差时返回全零序列)"""
return (series - series.mean()) / series.std() std = series.std()
if std == 0 or np.isnan(std):
return pd.Series(0.0, index=series.index)
return (series - series.mean()) / std
def winsorize(series: pd.Series, lower: float = 0.01, upper: float = 0.99) -> pd.Series: def winsorize(series: pd.Series, lower: float = 0.01, upper: float = 0.99) -> pd.Series:

View File

@@ -43,7 +43,12 @@ def normality_tests(returns: pd.Series) -> dict:
""" """
r = returns.dropna().values r = returns.dropna().values
# Kolmogorov-Smirnov 检验(与标准正态比较 # Lilliefors 检验(正确处理估计参数的正态性检验
try:
from statsmodels.stats.diagnostic import lilliefors
ks_stat, ks_p = lilliefors(r, dist='norm', pvalmethod='table')
except ImportError:
# 回退到 KS 检验并标注局限性
r_standardized = (r - r.mean()) / r.std() r_standardized = (r - r.mean()) / r.std()
ks_stat, ks_p = stats.kstest(r_standardized, 'norm') ks_stat, ks_p = stats.kstest(r_standardized, 'norm')
@@ -165,10 +170,14 @@ def fit_garch11(returns: pd.Series) -> dict:
# arch库推荐使用百分比收益率以改善数值稳定性 # arch库推荐使用百分比收益率以改善数值稳定性
r_pct = returns.dropna() * 100 r_pct = returns.dropna() * 100
# 拟合GARCH(1,1)均值模型用常数均值 # 拟合GARCH(1,1)使用t分布以匹配BTC厚尾特征
model = arch_model(r_pct, vol='Garch', p=1, q=1, mean='Constant', dist='Normal') model = arch_model(r_pct, vol='Garch', p=1, q=1, mean='Constant', dist='t')
result = model.fit(disp='off') result = model.fit(disp='off')
# 检查收敛状态
if result.convergence_flag != 0:
print(f" [警告] GARCH(1,1) 未收敛 (flag={result.convergence_flag}),参数可能不可靠")
# 提取参数 # 提取参数
params = result.params params = result.params
omega = params.get('omega', np.nan) omega = params.get('omega', np.nan)
@@ -444,7 +453,7 @@ def print_normality_results(results: dict):
print("正态性检验结果") print("正态性检验结果")
print("=" * 60) print("=" * 60)
print(f"\n[KS检验] Kolmogorov-Smirnov") print(f"\n[Lilliefors/KS检验] 正态性检验")
print(f" 统计量: {results['ks_statistic']:.6f}") print(f" 统计量: {results['ks_statistic']:.6f}")
print(f" p值: {results['ks_pvalue']:.2e}") print(f" p值: {results['ks_pvalue']:.2e}")
print(f" 结论: {'拒绝正态假设' if results['ks_pvalue'] < 0.05 else '不能拒绝正态假设'}") print(f" 结论: {'拒绝正态假设' if results['ks_pvalue'] < 0.05 else '不能拒绝正态假设'}")

View File

@@ -245,9 +245,8 @@ def _run_prophet(train_df: pd.DataFrame, val_df: pd.DataFrame) -> Dict:
# 转换为对数收益率预测(与其他模型对齐) # 转换为对数收益率预测(与其他模型对齐)
pred_close = forecast['yhat'].values pred_close = forecast['yhat'].values
# 用前一天的真实收盘价计算预测收益率 # 使用递推方式首个prev_close用训练集末尾真实价格后续用模型预测价格
# 第一天用训练集最后一天的价格 prev_close = np.concatenate([[train_df['close'].iloc[-1]], pred_close[:-1]])
prev_close = np.concatenate([[train_df['close'].iloc[-1]], val_df['close'].values[:-1]])
pred_returns = np.log(pred_close / prev_close) pred_returns = np.log(pred_close / prev_close)
print(f" 预测完成,验证期: {val_df.index[0]} ~ {val_df.index[-1]}") print(f" 预测完成,验证期: {val_df.index[0]} ~ {val_df.index[-1]}")

View File

@@ -69,11 +69,11 @@ def ensure_dir(path):
EVIDENCE_CRITERIA = """ EVIDENCE_CRITERIA = """
"真正有规律" 判定标准(必须同时满足): "真正有规律" 判定标准(必须同时满足):
1. FDR校正后 p < 0.05 1. FDR校正后 p < 0.05+2分
2. 排列检验 p < 0.01(如适用 2. p值极显著 (< 0.01) 额外加分(+1分
3. 测试集上效果方向一致且显著 3. 测试集上效果方向一致且显著+2分
4. >80% bootstrap子样本中成立如适用 4. >80% bootstrap子样本中成立如适用+1分
5. Cohen's d > 0.2 或经济意义显著 5. Cohen's d > 0.2 或经济意义显著+1分
6. 有合理的经济/市场直觉解释 6. 有合理的经济/市场直觉解释
""" """
@@ -111,7 +111,7 @@ def score_evidence(result: Dict) -> Dict:
if significant: if significant:
s += 2 s += 2
if p_value is not None and p_value < 0.01: if p_value is not None and p_value < 0.01:
s += 1 s += 1 # p值极显著补充严格性奖励
if effect_size is not None and abs(effect_size) > 0.2: if effect_size is not None and abs(effect_size) > 0.2:
s += 1 s += 1
if f.get("test_set_consistent", False): if f.get("test_set_consistent", False):

View File

@@ -202,8 +202,10 @@ def compare_garch_models(returns: pd.Series) -> dict:
# --- GARCH(1,1) --- # --- GARCH(1,1) ---
model_garch = arch_model(r_pct, vol='Garch', p=1, q=1, model_garch = arch_model(r_pct, vol='Garch', p=1, q=1,
mean='Constant', dist='Normal') mean='Constant', dist='t')
res_garch = model_garch.fit(disp='off') res_garch = model_garch.fit(disp='off')
if res_garch.convergence_flag != 0:
print(f" [警告] GARCH(1,1) 模型未收敛 (flag={res_garch.convergence_flag})")
results['GARCH'] = { results['GARCH'] = {
'params': dict(res_garch.params), 'params': dict(res_garch.params),
'aic': res_garch.aic, 'aic': res_garch.aic,
@@ -215,8 +217,10 @@ def compare_garch_models(returns: pd.Series) -> dict:
# --- EGARCH(1,1) --- # --- EGARCH(1,1) ---
model_egarch = arch_model(r_pct, vol='EGARCH', p=1, q=1, model_egarch = arch_model(r_pct, vol='EGARCH', p=1, q=1,
mean='Constant', dist='Normal') mean='Constant', dist='t')
res_egarch = model_egarch.fit(disp='off') res_egarch = model_egarch.fit(disp='off')
if res_egarch.convergence_flag != 0:
print(f" [警告] EGARCH(1,1) 模型未收敛 (flag={res_egarch.convergence_flag})")
# EGARCH的gamma参数反映杠杆效应负值表示负收益增大波动率 # EGARCH的gamma参数反映杠杆效应负值表示负收益增大波动率
egarch_params = dict(res_egarch.params) egarch_params = dict(res_egarch.params)
results['EGARCH'] = { results['EGARCH'] = {
@@ -232,8 +236,10 @@ def compare_garch_models(returns: pd.Series) -> dict:
# --- GJR-GARCH(1,1) --- # --- GJR-GARCH(1,1) ---
# GJR-GARCH 在 arch 库中通过 vol='Garch', o=1 实现 # GJR-GARCH 在 arch 库中通过 vol='Garch', o=1 实现
model_gjr = arch_model(r_pct, vol='Garch', p=1, o=1, q=1, model_gjr = arch_model(r_pct, vol='Garch', p=1, o=1, q=1,
mean='Constant', dist='Normal') mean='Constant', dist='t')
res_gjr = model_gjr.fit(disp='off') res_gjr = model_gjr.fit(disp='off')
if res_gjr.convergence_flag != 0:
print(f" [警告] GJR-GARCH(1,1) 模型未收敛 (flag={res_gjr.convergence_flag})")
gjr_params = dict(res_gjr.params) gjr_params = dict(res_gjr.params)
results['GJR-GARCH'] = { results['GJR-GARCH'] = {
'params': gjr_params, 'params': gjr_params,

View File

@@ -9,7 +9,7 @@ import sys
from pathlib import Path from pathlib import Path
# 添加项目路径 # 添加项目路径
sys.path.insert(0, str(Path(__file__).parent)) sys.path.insert(0, str(Path(__file__).parent.parent))
from src.hurst_analysis import multi_timeframe_hurst, plot_multi_timeframe, plot_hurst_vs_scale from src.hurst_analysis import multi_timeframe_hurst, plot_multi_timeframe, plot_hurst_vs_scale
@@ -42,7 +42,7 @@ def test_15_scales():
f"平均: {data['平均Hurst']:.4f} | 数据量: {data['数据量']:>7}") f"平均: {data['平均Hurst']:.4f} | 数据量: {data['数据量']:>7}")
# 生成可视化 # 生成可视化
output_dir = Path("output/hurst_test") output_dir = Path(__file__).parent.parent / "output" / "hurst_test"
output_dir.mkdir(parents=True, exist_ok=True) output_dir.mkdir(parents=True, exist_ok=True)
print("\n" + "=" * 70) print("\n" + "=" * 70)