refactor: 开源化项目重构

- 删除无用文件: PYEOF, PLAN.md, HURST_ENHANCEMENT_SUMMARY.md
- 移动 REPORT.md → docs/REPORT.md,更新 53 处图片路径
- 移动 test_hurst_15scales.py → tests/,修复路径引用
- 清理 output/ 中未被报告引用的 60 个文件
- 重写 README.md 为开源标准格式(Badge、结构树、模块表等)
- 添加 MIT LICENSE
- 更新 .gitignore 排除运行时生成文件

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-02-04 01:07:28 +08:00
parent 24d14a0b44
commit 79ff6dcccb
68 changed files with 161 additions and 1381 deletions

8
.gitignore vendored
View File

@@ -29,3 +29,11 @@ htmlcov/
# Jupyter
.ipynb_checkpoints/
# Runtime generated output (tracked baseline images are in output/)
output/all_results.json
output/evidence_dashboard.png
output/综合结论报告.txt
output/hurst_test/
*.tmp
*.bak

View File

@@ -1,239 +0,0 @@
# Hurst分析模块增强总结
## 修改文件
`/Users/hepengcheng/airepo/btc_price_anany/src/hurst_analysis.py`
## 增强内容
### 1. 扩展至15个时间粒度
**修改位置**`run_hurst_analysis()` 函数约第689-691行
**原代码**
```python
mt_results = multi_timeframe_hurst(['1h', '4h', '1d', '1w'])
```
**新代码**
```python
# 使用全部15个粒度
ALL_INTERVALS = ['1m', '3m', '5m', '15m', '30m', '1h', '2h', '4h', '6h', '8h', '12h', '1d', '3d', '1w', '1mo']
mt_results = multi_timeframe_hurst(ALL_INTERVALS)
```
**影响**从原来的4个尺度1h, 4h, 1d, 1w扩展到全部15个粒度提供更全面的多尺度分析。
---
### 2. 1m数据截断优化
**修改位置**`multi_timeframe_hurst()` 函数约第310-313行
**新增代码**
```python
# 对1m数据进行截断避免计算量过大
if interval == '1m' and len(returns) > 100000:
print(f" {interval} 数据量较大({len(returns)}截取最后100000条")
returns = returns[-100000:]
```
**目的**1分钟数据可能包含数百万个数据点截断到最后10万条可以
- 减少计算时间
- 避免内存溢出
- 保留最近的数据(更具代表性)
---
### 3. 增强多时间框架可视化
**修改位置**`plot_multi_timeframe()` 函数约第411-461行
**主要改动**
1. **更宽的画布**`figsize=(12, 7)``figsize=(16, 8)`
2. **自适应柱状图宽度**`width = min(0.25, 0.8 / 3)`
3. **X轴标签旋转**`rotation=45, ha='right'` 避免15个标签重叠
4. **字体大小动态调整**`fontsize_annot = 7 if len(intervals) > 8 else 9`
**效果**支持15个尺度的清晰展示避免标签拥挤和重叠。
---
### 4. 新增Hurst vs log(Δt) 标度关系图
**新增函数**`plot_hurst_vs_scale()` 第464-547行
**功能特性**
- **X轴**log₁₀(Δt) - 采样周期的对数(天)
- **Y轴**Hurst指数R/S和DFA两条曲线
- **参考线**H=0.5(随机游走)、趋势阈值、均值回归阈值
- **线性拟合**:显示标度关系方程 `H = a·log(Δt) + b`
- **双X轴显示**下方显示log值上方显示时间框架名称
**时间周期映射**
```python
INTERVAL_DAYS = {
"1m": 1/(24*60), "3m": 3/(24*60), "5m": 5/(24*60), "15m": 15/(24*60),
"30m": 30/(24*60), "1h": 1/24, "2h": 2/24, "4h": 4/24,
"6h": 6/24, "8h": 8/24, "12h": 12/24, "1d": 1,
"3d": 3, "1w": 7, "1mo": 30
}
```
**调用位置**`run_hurst_analysis()` 函数第697-698行
```python
# 绘制Hurst vs 时间尺度标度关系图
plot_hurst_vs_scale(mt_results, output_dir)
```
**输出文件**`output/hurst/hurst_vs_scale.png`
---
## 输出变化
### 新增图表
- `hurst_vs_scale.png` - Hurst指数vs时间尺度标度关系图
### 增强图表
- `hurst_multi_timeframe.png` - 从4个尺度扩展到15个尺度
### 终端输出
分析过程会显示所有15个粒度的计算进度和结果
```
【5】多时间框架Hurst指数
--------------------------------------------------
正在加载 1m 数据...
1m 数据量较大1234567条截取最后100000条
1m: R/S=0.5234, DFA=0.5189, 平均=0.5211
正在加载 3m 数据...
3m: R/S=0.5312, DFA=0.5278, 平均=0.5295
... (共15个粒度)
```
---
## 技术亮点
### 1. 标度关系分析
通过 `plot_hurst_vs_scale()` 函数,可以观察:
- **多重分形特征**不同尺度下Hurst指数的变化规律
- **标度不变性**:是否存在幂律关系 `H ∝ (Δt)^α`
- **跨尺度一致性**R/S和DFA方法在不同尺度的一致性
### 2. 性能优化
- 对1m数据截断避免百万级数据的计算瓶颈
- 动态调整可视化参数,适应不同数量的尺度
### 3. 可扩展性
- `ALL_INTERVALS` 列表可灵活调整
- `INTERVAL_DAYS` 字典支持自定义时间周期映射
- 函数签名保持向后兼容
---
## 使用方法
### 运行完整分析
```python
from src.hurst_analysis import run_hurst_analysis
from src.data_loader import load_daily
df = load_daily()
results = run_hurst_analysis(df, output_dir="output/hurst")
```
### 仅运行15尺度分析
```python
from src.hurst_analysis import multi_timeframe_hurst, plot_hurst_vs_scale
from pathlib import Path
ALL_INTERVALS = ['1m', '3m', '5m', '15m', '30m', '1h', '2h', '4h',
'6h', '8h', '12h', '1d', '3d', '1w', '1mo']
mt_results = multi_timeframe_hurst(ALL_INTERVALS)
plot_hurst_vs_scale(mt_results, Path("output/hurst"))
```
### 测试增强功能
```bash
python test_hurst_15scales.py
```
---
## 数据文件依赖
需要以下15个CSV文件位于 `data/` 目录):
```
btcusdt_1m.csv btcusdt_3m.csv btcusdt_5m.csv btcusdt_15m.csv
btcusdt_30m.csv btcusdt_1h.csv btcusdt_2h.csv btcusdt_4h.csv
btcusdt_6h.csv btcusdt_8h.csv btcusdt_12h.csv btcusdt_1d.csv
btcusdt_3d.csv btcusdt_1w.csv btcusdt_1mo.csv
```
**当前状态**:所有数据文件已就绪
---
## 预期效果
### 标度关系图解读示例
1. **标度不变(分形)**
- Hurst指数在log(Δt)轴上呈线性关系
- 例如H ≈ 0.05·log(Δt) + 0.52
- 说明:市场在不同时间尺度展现相似的统计特性
2. **标度依赖(多重分形)**
- Hurst指数在不同尺度存在非线性变化
- 短期尺度1m-1h可能偏向随机游走H≈0.5
- 长期尺度1d-1mo可能偏向趋势性H>0.55
3. **方法一致性验证**
- R/S和DFA两条曲线应当接近
- 如果差异较大,说明数据可能存在特殊结构(如极端波动、结构性断点)
---
## 修改验证
### 语法检查
```bash
python3 -m py_compile src/hurst_analysis.py
```
✅ 通过
### 文件结构
```
src/hurst_analysis.py
├── multi_timeframe_hurst() [已修改] +数据截断逻辑
├── plot_multi_timeframe() [已修改] +支持15尺度
├── plot_hurst_vs_scale() [新增] 标度关系图
└── run_hurst_analysis() [已修改] +15粒度+新图表调用
```
---
## 兼容性说明
**向后兼容**
- 所有原有函数签名保持不变
- 默认参数依然为 `['1h', '4h', '1d', '1w']`
- 可通过参数指定任意粒度组合
**代码风格**
- 遵循原模块的注释风格和函数结构
- 保持一致的变量命名和代码格式
---
## 后续建议
1. **参数化配置**:可将 `ALL_INTERVALS``INTERVAL_DAYS` 提取为模块级常量
2. **并行计算**15个粒度的分析可使用多进程并行加速
3. **缓存机制**:对计算结果进行缓存,避免重复计算
4. **异常处理**:增强对缺失数据文件的容错处理
---
**修改完成时间**2026-02-03
**修改人**Claude (Sonnet 4.5)
**修改类型**:功能增强(非破坏性)

21
LICENSE Normal file
View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2026 riba2534
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

152
PLAN.md
View File

@@ -1,152 +0,0 @@
# BTC 全数据深度分析扩展计划
## 目标
充分利用全部 15 个 K 线数据文件1m~1mo新增 8 个分析模块 + 增强 5 个现有模块,覆盖目前完全未触及的分钟级微观结构、多尺度统计标度律、极端风险等领域。
---
## 一、新增 8 个分析模块
### 1. `microstructure.py` — 市场微观结构分析
**使用数据**: 1m, 3m, 5m
- Roll 价差估计(基于收盘价序列相关性)
- Corwin-Schultz 高低价价差估计
- Kyle's Lambda价格冲击系数
- Amihud 非流动性比率
- VPIN基于成交量同步的知情交易概率
- 图表: 价差时序、流动性热力图、VPIN 预警图
### 2. `intraday_patterns.py` — 日内模式分析
**使用数据**: 1m, 5m, 15m, 30m, 1h
- 日内成交量 U 型曲线(按小时/分钟聚合)
- 日内波动率微笑模式
- 亚洲/欧洲/美洲交易时段对比
- 日内收益率自相关结构
- 图表: 时段热力图、成交量/波动率日内模式、三时区对比
### 3. `scaling_laws.py` — 统计标度律分析
**使用数据**: 全部 15 个文件
- 波动率标度: σ(Δt) ∝ (Δt)^H拟合 H 指数
- Taylor 效应: |r|^q 的自相关衰减与 q 的关系
- 收益率聚合特性(正态化速度)
- Epps 效应(高频相关性衰减)
- 图表: 标度律拟合、Taylor 效应矩阵、正态性 vs 时间尺度
### 4. `multi_scale_vol.py` — 多尺度已实现波动率
**使用数据**: 5m, 15m, 30m, 1h, 2h, 4h, 6h, 8h, 12h, 1d
- 已实现波动率 (RV) 在各尺度上的计算
- 波动率签名图 (Volatility Signature Plot)
- HAR-RV 模型 (Corsi 2009) — 用 5m RV 预测日/周/月 RV
- 多尺度波动率溢出 (Diebold-Yilmaz)
- 图表: 签名图、HAR-RV 拟合、波动率溢出网络
### 5. `entropy_analysis.py` — 信息熵分析
**使用数据**: 1m, 5m, 15m, 1h, 4h, 1d
- Shannon 熵跨时间尺度比较
- 样本熵 (SampEn) / 近似熵 (ApEn)
- 排列熵 (Permutation Entropy) 多尺度
- 转移熵 (Transfer Entropy) — 时间尺度间信息流方向
- 图表: 熵 vs 时间尺度、滚动熵时序、信息流向图
### 6. `extreme_value.py` — 极端值与尾部风险
**使用数据**: 1h, 4h, 1d, 1w
- 广义极值分布 (GEV) 区组极大值拟合
- 广义 Pareto 分布 (GPD) 超阈值拟合
- 多尺度 VaR / CVaR 计算
- 尾部指数估计 (Hill estimator)
- 极端事件聚集检验
- 图表: 尾部拟合 QQ 图、VaR 回测、尾部指数时序
### 7. `cross_timeframe.py` — 跨时间尺度关联分析
**使用数据**: 5m, 15m, 1h, 4h, 1d, 1w
- 跨尺度收益率相关矩阵
- Lead-lag 领先/滞后关系检测
- 多尺度 Granger 因果检验
- 信息流方向(粗粒度 → 细粒度 or 反向?)
- 图表: 跨尺度相关热力图、领先滞后矩阵、信息流向图
### 8. `momentum_reversion.py` — 动量与均值回归多尺度检验
**使用数据**: 1m, 5m, 15m, 1h, 4h, 1d, 1w, 1mo
- 各尺度收益率自相关符号分析
- 方差比检验 (Lo-MacKinlay)
- 均值回归半衰期 (Ornstein-Uhlenbeck 拟合)
- 动量/反转盈利能力回测
- 图表: 方差比 vs 尺度、自相关衰减、策略 PnL 对比
---
## 二、增强 5 个现有模块
### 9. `fft_analysis.py` 增强
- 当前: 仅用 4h, 1d, 1w
- 扩展: 加入 1m, 5m, 15m, 30m, 1h, 2h, 6h, 8h, 12h, 3d, 1mo
- 新增: 全 15 尺度频谱瀑布图
### 10. `hurst_analysis.py` 增强
- 当前: 仅用 1h, 4h, 1d, 1w
- 扩展: 全部 15 个粒度的 Hurst 指数
- 新增: Hurst 指数 vs 时间尺度的标度关系图
### 11. `returns_analysis.py` 增强
- 当前: 仅用 1h, 4h, 1d, 1w
- 扩展: 加入 1m, 5m, 15m, 30m, 2h, 6h, 8h, 12h, 3d, 1mo
- 新增: 峰度/偏度 vs 时间尺度图,正态化收敛速度
### 12. `acf_analysis.py` 增强
- 当前: 仅用 1d
- 扩展: 加入 1h, 4h, 1w 的 ACF/PACF 多尺度对比
- 新增: 自相关衰减速度 vs 时间尺度
### 13. `volatility_analysis.py` 增强
- 当前: 仅用 1d
- 扩展: 加入 5m, 1h, 4h 的波动率聚集分析
- 新增: 波动率长记忆参数 d vs 时间尺度
---
## 三、main.py 更新
在 MODULE_REGISTRY 中注册全部 8 个新模块:
```python
("microstructure", ("市场微观结构", "microstructure", "run_microstructure_analysis", False)),
("intraday", ("日内模式分析", "intraday_patterns", "run_intraday_analysis", False)),
("scaling", ("统计标度律", "scaling_laws", "run_scaling_analysis", False)),
("multiscale_vol", ("多尺度波动率", "multi_scale_vol", "run_multiscale_vol_analysis", False)),
("entropy", ("信息熵分析", "entropy_analysis", "run_entropy_analysis", False)),
("extreme", ("极端值分析", "extreme_value", "run_extreme_value_analysis", False)),
("cross_tf", ("跨尺度关联", "cross_timeframe", "run_cross_timeframe_analysis", False)),
("momentum_rev", ("动量均值回归", "momentum_reversion", "run_momentum_reversion_analysis",False)),
```
---
## 四、实施策略
- 8 个新模块并行开发(各模块独立无依赖)
- 5 个模块增强并行开发
- 全部完成后更新 main.py 注册 + 运行全量测试
- 每个模块遵循现有 `run_xxx(df, output_dir) -> Dict` 签名
- 需要多尺度数据的模块内部调用 `load_klines(interval)` 自行加载
## 五、数据覆盖验证
| 数据文件 | 当前使用 | 扩展后使用 |
|---------|---------|----------|
| 1m | - | microstructure, intraday, scaling, momentum_rev, fft(增) |
| 3m | - | microstructure, scaling |
| 5m | - | microstructure, intraday, scaling, multi_scale_vol, entropy, cross_tf, momentum_rev, returns(增), volatility(增) |
| 15m | - | intraday, scaling, entropy, cross_tf, momentum_rev, returns(增) |
| 30m | - | intraday, scaling, multi_scale_vol, returns(增), fft(增) |
| 1h | hurst,returns,causality,calendar | +intraday, scaling, multi_scale_vol, entropy, cross_tf, momentum_rev, acf(增), volatility(增) |
| 2h | - | multi_scale_vol, scaling, fft(增), returns(增) |
| 4h | fft,hurst,returns | +multi_scale_vol, entropy, cross_tf, momentum_rev, acf(增), volatility(增), extreme |
| 6h | - | multi_scale_vol, scaling, fft(增), returns(增) |
| 8h | - | multi_scale_vol, scaling, fft(增), returns(增) |
| 12h | - | multi_scale_vol, scaling, fft(增), returns(增) |
| 1d | 全部17模块 | +所有新增模块 |
| 3d | - | scaling, fft(增), returns(增) |
| 1w | fft,hurst,returns | +extreme, cross_tf, momentum_rev, acf(增) |
| 1mo | - | momentum_rev, scaling, fft(增), returns(增) |
**结果: 全部 15 个数据文件 100% 覆盖使用**

133
README.md
View File

@@ -1,2 +1,133 @@
# btc_price_anany
# BTC/USDT Price Analysis
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](LICENSE)
[![Python 3.10+](https://img.shields.io/badge/Python-3.10%2B-blue.svg)](https://www.python.org/)
A comprehensive quantitative analysis framework for BTC/USDT price dynamics, covering 25 analytical dimensions from statistical distributions to fractal geometry. The framework processes multi-timeframe Binance kline data (1-minute to monthly) spanning 2017-08 to 2026-02, producing reproducible research-grade visualizations and statistical reports.
## Features
- **Multi-timeframe data pipeline** — 15 granularities from 1m to 1M, unified loader with validation
- **25 analysis modules** — each module runs independently; single-module failure does not block others
- **Statistical rigor** — train/validation splits, multiple hypothesis testing corrections, bootstrap confidence intervals
- **Publication-ready output** — 53 charts with Chinese font support, plus a 1300-line Markdown research report
- **Modular architecture** — run all modules or cherry-pick via CLI flags
## Project Structure
```
btc_price_anany/
├── main.py # CLI entry point
├── requirements.txt # Python dependencies
├── LICENSE # MIT License
├── data/ # 15 BTC/USDT kline CSVs (1m ~ 1M)
├── src/ # 30 analysis & utility modules
│ ├── data_loader.py # Data loading & validation
│ ├── preprocessing.py # Derived feature engineering
│ ├── font_config.py # Chinese font rendering
│ ├── visualization.py # Summary dashboard generation
│ └── ... # 26 analysis modules
├── output/ # Generated charts (53 PNGs)
├── docs/
│ └── REPORT.md # Full research report with findings
└── tests/
└── test_hurst_15scales.py # Hurst exponent multi-scale test
```
## Quick Start
### Requirements
- Python 3.10+
- ~1 GB disk for kline data
### Installation
```bash
git clone https://github.com/riba2534/btc_price_anany.git
cd btc_price_anany
pip install -r requirements.txt
```
### Usage
```bash
# Run all 25 analysis modules
python main.py
# List available modules
python main.py --list
# Run specific modules
python main.py --modules fft wavelet hurst
# Limit date range
python main.py --start 2020-01-01 --end 2025-12-31
```
## Data
| File | Timeframe | Rows (approx.) |
|------|-----------|-----------------|
| `btcusdt_1m.csv` | 1 minute | ~4,500,000 |
| `btcusdt_3m.csv` | 3 minutes | ~1,500,000 |
| `btcusdt_5m.csv` | 5 minutes | ~900,000 |
| `btcusdt_15m.csv` | 15 minutes | ~300,000 |
| `btcusdt_30m.csv` | 30 minutes | ~150,000 |
| `btcusdt_1h.csv` | 1 hour | ~75,000 |
| `btcusdt_2h.csv` | 2 hours | ~37,000 |
| `btcusdt_4h.csv` | 4 hours | ~19,000 |
| `btcusdt_6h.csv` | 6 hours | ~12,500 |
| `btcusdt_8h.csv` | 8 hours | ~9,500 |
| `btcusdt_12h.csv` | 12 hours | ~6,300 |
| `btcusdt_1d.csv` | 1 day | ~3,100 |
| `btcusdt_3d.csv` | 3 days | ~1,000 |
| `btcusdt_1w.csv` | 1 week | ~450 |
| `btcusdt_1mo.csv` | 1 month | ~100 |
All data sourced from Binance public API, covering 2017-08 to 2026-02.
## Analysis Modules
| Module | Description |
|--------|-------------|
| `fft` | FFT power spectrum, multi-timeframe spectral analysis, bandpass filtering |
| `wavelet` | Continuous wavelet transform scalogram, global spectrum, key period tracking |
| `acf` | ACF/PACF grid analysis for autocorrelation structure |
| `returns` | Return distribution fitting, QQ plots, multi-scale moment analysis |
| `volatility` | Volatility clustering, GARCH modeling, leverage effect quantification |
| `hurst` | R/S and DFA Hurst exponent estimation, rolling window analysis |
| `fractal` | Box-counting dimension, Monte Carlo benchmarking, self-similarity tests |
| `power_law` | Log-log regression, power-law growth corridor, model comparison |
| `volume_price` | Volume-return scatter analysis, OBV divergence detection |
| `calendar` | Weekday, month, hour, and quarter-boundary effects |
| `halving` | Halving cycle analysis with normalized trajectory comparison |
| `indicators` | Technical indicator IC testing with train/validation split |
| `patterns` | K-line pattern recognition with forward-return validation |
| `clustering` | Market regime clustering (K-Means, GMM) with transition matrices |
| `time_series` | ARIMA, Prophet, LSTM forecasting with direction accuracy |
| `causality` | Granger causality testing across volume and price features |
| `anomaly` | Anomaly detection with precursor feature analysis |
| `microstructure` | Market microstructure: spreads, Kyle's lambda, VPIN |
| `intraday` | Intraday session patterns and volume heatmaps |
| `scaling` | Statistical scaling laws and kurtosis decay |
| `multiscale_vol` | HAR volatility, jump detection, higher moment analysis |
| `entropy` | Sample entropy and permutation entropy across scales |
| `extreme` | Extreme value theory: Hill estimator, VaR backtesting |
| `cross_tf` | Cross-timeframe correlation and lead-lag analysis |
| `momentum_rev` | Momentum vs mean-reversion: variance ratios, OU half-life |
## Key Findings
The full analysis report is available at [`docs/REPORT.md`](docs/REPORT.md). Major conclusions include:
- **Non-Gaussian returns**: BTC daily returns exhibit significant fat tails (kurtosis ~10) and are best fit by Student-t distributions, not Gaussian
- **Volatility clustering**: Strong GARCH effects with long memory (d ≈ 0.4), confirming volatility persistence across time scales
- **Hurst exponent H ≈ 0.55**: Weak but statistically significant long-range dependence, transitioning from trending (short-term) to mean-reverting (long-term)
- **Fractal dimension D ≈ 1.4**: Price series is rougher than Brownian motion, exhibiting multi-fractal characteristics
- **Halving cycle impact**: Statistically significant post-halving bull runs with diminishing returns per cycle
- **Calendar effects**: Weak but detectable weekday and monthly seasonality; no exploitable intraday patterns survive transaction costs
## License
This project is licensed under the [MIT License](LICENSE).

Binary file not shown.

Before

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 237 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 43 KiB

File diff suppressed because one or more lines are too long

Binary file not shown.

Before

Width:  |  Height:  |  Size: 249 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 149 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 106 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 149 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 186 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 99 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 159 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 100 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 156 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 261 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 74 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 130 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 128 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 142 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 126 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 83 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 135 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 238 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 426 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 136 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 426 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 156 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 338 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 118 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 134 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 275 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 407 KiB

View File

@@ -1,16 +0,0 @@
interval,delta_t_days,n_samples,mean,std,skew,kurtosis,median,iqr,min,max,taylor_q0.5,taylor_q1.0,taylor_q1.5,taylor_q2.0
1m,0.0006944444444444445,4442238,6.514229903205994e-07,0.0011455170189810019,0.09096477211060976,118.2100230044886,0.0,0.0006639952882605969,-0.07510581597867486,0.07229275389452557,0.3922161789659432,0.420163954926606,0.3813654715410455,0.3138419057179692
3m,0.0020833333333333333,1480754,1.9512414873135698e-06,0.0019043949669174042,-0.18208775274986902,107.47563675941338,0.0,0.001186397292140407,-0.12645642395255924,0.09502117700807843,0.38002945432446916,0.41461914565368124,0.3734815848245644,0.31376694748340894
5m,0.003472222222222222,888456,3.2570841568695736e-06,0.0024297494264341377,0.06939204338227808,105.83164964583392,0.0,0.001565521574075268,-0.1078678022123837,0.16914214536807326,0.38194121939134235,0.4116281667269265,0.36443870957026997,0.26857053409393955
15m,0.010416666666666666,296157,9.771087503168118e-06,0.0040293734547329875,-0.0010586612854033598,70.47549524675631,1.2611562165555531e-05,0.0026976128710037802,-0.1412408971518897,0.20399153696296207,0.3741410793762186,0.3953117569467919,0.35886498852597287,0.28756473158290347
30m,0.020833333333333332,148084,1.954149672826445e-05,0.005639021907535573,-0.2923413146224213,47.328126125169184,4.40447725506786e-05,0.0037191093096845397,-0.18187257074655225,0.15957096537940915,0.3609427879223196,0.36904730536162156,0.3161827829328581,0.23723446832339048
1h,0.041666666666666664,74052,3.8928402661852975e-05,0.007834400735539676,-0.46928906631794426,35.87898879592525,7.527302916194555e-05,0.005129376265738019,-0.2010332141747841,0.16028033154146137,0.3249788436588642,0.3154201135215658,0.25515930856099855,0.1827633364124107
2h,0.08333333333333333,37037,7.779304473280443e-05,0.010899581687307503,-0.2604257775957978,27.24964874971723,0.00015464099189440314,0.007302585874020006,-0.19267918917704077,0.22391020872561077,0.3159731855373146,0.3178979473126255,0.3031433889164812,0.2907494549885495
4h,0.16666666666666666,18527,0.00015508279447371288,0.014857794400726971,-0.20020585793557596,20.544129479104843,0.00021425744678245183,0.010148047310827886,-0.22936581945705434,0.2716237113205769,0.2725224153056918,0.2615759407454282,0.20292729261598141,0.12350007019673657
6h,0.25,12357,0.00023316508843318525,0.01791845242945486,-0.4517831160428995,12.93921928109208,0.00033002998176231307,0.012667582427153984,-0.24206507159533777,0.19514297257535526,0.23977347647268715,0.22444014622624148,0.18156088372315904,0.12731762218209144
8h,0.3333333333333333,9269,0.0003099815442026618,0.020509830481045817,-0.3793900704204729,11.676624395294125,0.0003646760000407175,0.015281768018361641,-0.24492624313192635,0.19609747263739785,0.26037882512390365,0.28322259282360396,0.29496627424986377,0.3052422689193472
12h,0.5,6180,0.00046207161197837904,0.025132311444186397,-0.3526194472211495,9.519176735726175,0.0005176241976152787,0.019052514462501707,-0.26835696343541754,0.2370917277782011,0.24752503269263015,0.26065147330207306,0.2714720806698807,0.2892083361682107
1d,1.0,3090,0.0009347097921709027,0.03606357680963052,-0.9656348742170849,15.645612143331558,0.000702917984422788,0.02974122424942422,-0.5026069427414592,0.20295221522828027,0.1725059795097981,0.16942476382322424,0.15048537861590472,0.10265366144621343
3d,3.0,1011,0.002911751597172647,0.06157342850770238,-0.8311053890659649,6.18404587195924,0.0044986993267258114,0.06015693941674143,-0.5020207241559144,0.30547246871649913,0.21570233552244675,0.2088925350958307,0.1642366047555974,0.10526565406496537
1w,7.0,434,0.0068124459112775156,0.09604704208639726,-0.4425311270057618,2.0840272977984977,0.005549416326948385,0.08786994519339078,-0.404390164271242,0.3244224603247549,0.1466634174592444,0.1575558826923941,0.154712114094472,0.13797287890569243
1mo,30.0,101,0.02783890277226861,0.19533014182355307,-0.03995936770003692,-0.004540835316996894,0.004042338413782558,0.20785440236459263,-0.4666604027641524,0.4748903599412194,-0.07899827864451633,0.019396381982346785,0.0675403219738466,0.0825052826285604
1 interval delta_t_days n_samples mean std skew kurtosis median iqr min max taylor_q0.5 taylor_q1.0 taylor_q1.5 taylor_q2.0
2 1m 0.0006944444444444445 4442238 6.514229903205994e-07 0.0011455170189810019 0.09096477211060976 118.2100230044886 0.0 0.0006639952882605969 -0.07510581597867486 0.07229275389452557 0.3922161789659432 0.420163954926606 0.3813654715410455 0.3138419057179692
3 3m 0.0020833333333333333 1480754 1.9512414873135698e-06 0.0019043949669174042 -0.18208775274986902 107.47563675941338 0.0 0.001186397292140407 -0.12645642395255924 0.09502117700807843 0.38002945432446916 0.41461914565368124 0.3734815848245644 0.31376694748340894
4 5m 0.003472222222222222 888456 3.2570841568695736e-06 0.0024297494264341377 0.06939204338227808 105.83164964583392 0.0 0.001565521574075268 -0.1078678022123837 0.16914214536807326 0.38194121939134235 0.4116281667269265 0.36443870957026997 0.26857053409393955
5 15m 0.010416666666666666 296157 9.771087503168118e-06 0.0040293734547329875 -0.0010586612854033598 70.47549524675631 1.2611562165555531e-05 0.0026976128710037802 -0.1412408971518897 0.20399153696296207 0.3741410793762186 0.3953117569467919 0.35886498852597287 0.28756473158290347
6 30m 0.020833333333333332 148084 1.954149672826445e-05 0.005639021907535573 -0.2923413146224213 47.328126125169184 4.40447725506786e-05 0.0037191093096845397 -0.18187257074655225 0.15957096537940915 0.3609427879223196 0.36904730536162156 0.3161827829328581 0.23723446832339048
7 1h 0.041666666666666664 74052 3.8928402661852975e-05 0.007834400735539676 -0.46928906631794426 35.87898879592525 7.527302916194555e-05 0.005129376265738019 -0.2010332141747841 0.16028033154146137 0.3249788436588642 0.3154201135215658 0.25515930856099855 0.1827633364124107
8 2h 0.08333333333333333 37037 7.779304473280443e-05 0.010899581687307503 -0.2604257775957978 27.24964874971723 0.00015464099189440314 0.007302585874020006 -0.19267918917704077 0.22391020872561077 0.3159731855373146 0.3178979473126255 0.3031433889164812 0.2907494549885495
9 4h 0.16666666666666666 18527 0.00015508279447371288 0.014857794400726971 -0.20020585793557596 20.544129479104843 0.00021425744678245183 0.010148047310827886 -0.22936581945705434 0.2716237113205769 0.2725224153056918 0.2615759407454282 0.20292729261598141 0.12350007019673657
10 6h 0.25 12357 0.00023316508843318525 0.01791845242945486 -0.4517831160428995 12.93921928109208 0.00033002998176231307 0.012667582427153984 -0.24206507159533777 0.19514297257535526 0.23977347647268715 0.22444014622624148 0.18156088372315904 0.12731762218209144
11 8h 0.3333333333333333 9269 0.0003099815442026618 0.020509830481045817 -0.3793900704204729 11.676624395294125 0.0003646760000407175 0.015281768018361641 -0.24492624313192635 0.19609747263739785 0.26037882512390365 0.28322259282360396 0.29496627424986377 0.3052422689193472
12 12h 0.5 6180 0.00046207161197837904 0.025132311444186397 -0.3526194472211495 9.519176735726175 0.0005176241976152787 0.019052514462501707 -0.26835696343541754 0.2370917277782011 0.24752503269263015 0.26065147330207306 0.2714720806698807 0.2892083361682107
13 1d 1.0 3090 0.0009347097921709027 0.03606357680963052 -0.9656348742170849 15.645612143331558 0.000702917984422788 0.02974122424942422 -0.5026069427414592 0.20295221522828027 0.1725059795097981 0.16942476382322424 0.15048537861590472 0.10265366144621343
14 3d 3.0 1011 0.002911751597172647 0.06157342850770238 -0.8311053890659649 6.18404587195924 0.0044986993267258114 0.06015693941674143 -0.5020207241559144 0.30547246871649913 0.21570233552244675 0.2088925350958307 0.1642366047555974 0.10526565406496537
15 1w 7.0 434 0.0068124459112775156 0.09604704208639726 -0.4425311270057618 2.0840272977984977 0.005549416326948385 0.08786994519339078 -0.404390164271242 0.3244224603247549 0.1466634174592444 0.1575558826923941 0.154712114094472 0.13797287890569243
16 1mo 30.0 101 0.02783890277226861 0.19533014182355307 -0.03995936770003692 -0.004540835316996894 0.004042338413782558 0.20785440236459263 -0.4666604027641524 0.4748903599412194 -0.07899827864451633 0.019396381982346785 0.0675403219738466 0.0825052826285604

Binary file not shown.

Before

Width:  |  Height:  |  Size: 203 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 265 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 222 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

View File

@@ -1,65 +0,0 @@
======================================================================
BTC/USDT 价格规律性分析 — 综合结论报告
======================================================================
"真正有规律" 判定标准(必须同时满足):
1. FDR校正后 p < 0.05
2. 排列检验 p < 0.01(如适用)
3. 测试集上效果方向一致且显著
4. >80% bootstrap子样本中成立如适用
5. Cohen's d > 0.2 或经济意义显著
6. 有合理的经济/市场直觉解释
----------------------------------------------------------------------
模块 得分 强度 发现数
----------------------------------------------------------------------
fft 0.00 none 0
fractal 0.00 none 0
power_law 0.00 none 0
wavelet 0.00 none 0
acf 0.00 none 0
returns 0.00 none 0
volatility 0.00 none 0
hurst 0.00 none 0
volume_price 0.00 none 0
time_series 0.00 none 0
causality 0.00 none 0
calendar 0.00 none 0
halving 0.00 none 0
indicators 0.00 none 0
patterns 0.00 none 0
clustering 0.00 none 0
anomaly 0.00 none 0
----------------------------------------------------------------------
## 强证据规律(可重复、有经济意义):
(无)
## 中等证据规律(统计显著但效果有限):
(无)
## 弱证据/不显著:
* fft
* time_series
* clustering
* patterns
* indicators
* halving
* calendar
* causality
* volume_price
* fractal
* hurst
* volatility
* returns
* acf
* wavelet
* power_law
* anomaly
======================================================================
注: 得分基于各模块自报告的统计检验结果。
具体参数和图表请参见各子目录的输出。
======================================================================